
Kuhn-Tucker-Lagrange conditions: basics

This handout contains all you really need to know about KT in order to be able to solve problems.

General non-linear optimisation problem: let f : Rn → R, g : Rn → Rm. Namely, f(x) is an objective func-
tion, and the notation g(x) = (g1(x), . . . , gm(x)) embraces the constraint functions, with x = (x1, . . . , xn). All
the functions are smooth. Consider the problem

Min f(x) such that g(x) ≥ 0. (1)

Let
F = {x ∈ Rn : g(x) ≥ 0}

be the feasible set for (1).
The problem is handled via the Lagrange multipliers method. The key difference will be now that due to

the fact that the constraints are formulated as inequalities, Lagrange multipliers will be non-negative. Kuhn-
Tucker conditions, henceforth KT, are the necessary conditions for some feasible x to be a local minimum for the
optimisation problem (1).

In general, one can proclaim the following alternative: either x is a local minimum or it is not. Let’s call
the former side of the alternative (x is a local minimum) positive, and the latter side (it is not local minimum)
negative. If the positive side of the alternative is true, then the following scenario cannot happen.

There cannot exist a curve γ, emanating from x and contained in the feasible set F – let us refer to γ as a
feasible curve beginning at x – such that f(x) decreases along this curve. In particular, if v is the tangent vector
to the curve γ at its initial point x, then the directional derivative of f in the direction v cannot be negative.
Indeed, otherwise, arbitrarily closely to x in F there will be points x′, where f(x′) is smaller than f(x).

Given x, let us introduce the set of True Feasible Directions at x as the set of all vectors v, such that there
exists a feasible curve γ, beginning at x, and such that v is the tangent to γ at x. Denote this set TFD(x). So
the set TFD(x) is just the set of tangent vectors at x to all feasible curves beginning at x.

Also, given x, let us say that the ith constraint matters at x if it is tight at x, i.e gi(x) = 0.
Then if v ∈ TFD(x) and the ith constraint matters at x, one must have

v · ∇gi(x) ≥ 0. (2)

Otherwise, if it were < 0, there will be points in F – on any feasible curve γ, to which v is tangent at x – where
gi < 0, which contradicts the notion of feasibility.

The definition of the set of True Feasible Directions is geometrically clear, but it is not at all clear how it can
be put into formulae. One would like to use (2) instead. So let us call the set of all v, such that for all constraints
that matter in x, they satisfy (2) the set of Feasible Directions at x. Denote this set FD(x). What we’ve shown
so far is that TFD(x) ⊆ FD(x): a true feasible direction is always a feasible direction.

Just like the Lagrange multipliers’ under equality constraints theorem, KT conditions will work only under
the non-degeneracy assumption. This assumption is TFD(x) = FD(x), rather than ⊂. This assumption is called
Constraint Qualification, in short CQ. So, if CQ is satisfied, the method below will work. If CQ is not satisfied –
then it may fail.

Let us now formulate the theorem and elaborate on it.
Theorem (Kuhn-Tucker) If x is a local minimum for the optimisation problem (1) and CQ is satisfied at x,

then the gradient ∇f(x) must be represented as a linear combination of the gradients of the constraints gi(x) that
matter (are tight) at x, with non-negative coefficients.

These coefficients are called, once again, Lagrange multipliers. To eliminate “constraints that matter” notion
from the formulation, observe that if we can just set λ ∈ Rm

+ (assign a Lagrange multiplier to each constraint)
and then require

λ · g(x) = 0, i.e. λ1g1(x) + . . . + λmgm(x) = 0.

Then we can only have λi 6= 0 when gi(x) = 0 (tight), while as soon as gi(x) > 0 we may not have λi > 0, because
this will never give us zero in the right-hand side above. Therefore, we can reformulate the theorem as follows.
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Theorem (Kuhn-Tucker, reformulated) If x is a local minimum for the optimisation problem (1) and CQ is
satisfied at x, then x must satisfy the following system of equations-inequalities:

∇f(x) = λ1∇g1(x) + . . . + λm∇gm(x),

0 = λ1g1(x) + . . . + λmgm(x),

0 ≤ g(x),

(3)

with λ ∈ Rm
+ .

This is a practical formulation – the system (3) is referred to as Kuhn-Tucker (Lagrange) conditions. Practically,
one can solve it, find all x that satisfy it – and these will be suitable candidates for local minima, provided that
CQ is satisfied.

Note that the first equation in (3) is, in fact, n equations, and is equivalent to obtaining critical points with
respect to x of the Lagrangian

L(x, λ) = f(x)− λ · g(x),

with λ ≥ 0 and the minus sign being therefore important! Observe that for the MAXIMUM problem, all one
needs to do is to change the minus sign in the Lagrangian to plus, because finding a maximum for f is the same
as finding a minimum for −f .

Proof of KT theorem: Follows immediately from the Farkas alternative. Given x, let A be a matrix, whose
columns are the vectors ∇gi(x) for the constraints that matter at x. Let b = ∇f(x). By the Farkas alternative,
one of the two occurs: either Aλ = b for some λ ≥ 0, or there exists some v, such that vT A ≥ 0 and v ·b < 0. I.e.,
there exists a feasible direction v, such that the directional derivative of f in the direction v is negative. Under
the non-degeneracy assumption, v is a true feasible direction. So, if x is a local minimum, the latter side of the
Farkas alternative cannot occur. Then the former must occur. But the former side of Farkas is (3).¤

This is really it. Let us make some final remarks addressing the longer handout.

1. Often it happens that among the constraints one has x1, . . . , xn ≥ 0. These have a particularly simple form,
because their gradients are just the coordinate unit vectors (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) respectively, often
denoted as ej . These constraints can be singled out from the rest, g(x) = 0 then describing the rest of
“more difficult” constraints. In literature the Lagrange multipliers, corresponding to the “easy” constraints
x ≥ 0 are often denoted as µ, while λ stand for the Lagrange multipliers corresponding to the rest of the
constraints. The Lagrangian is then L(x, λ,µ), with x,λ, µ ≥ 0, the extra term −µ · x, and the second
relation in (3) then adds to itself x ·µ = 0. (Besides, many books use the letter Ψ for the Lagrangian, rather
than L.)

2. To list the constraints tight at x, one can run in literature into the notation J(x) for the list of all the
components of x which are zero (provided that x ≥ 0 is given as a constraint) and I(x) for the list of the
remaining constraints that are tight. With this notation, the main formula of the KT theorem becomes

∇f(x) =
∑

j∈J(x)

µje
j +

∑

i∈I(x)

λi∇gi(x).

Following Franklin, I used the above notations in the long handouts, rather than introducing the notion of
constraints that matter. Both ways express equivalently the same concept. And one gets rid of those by
rather writing the second expression in (3) and dealing with it (adding µ ·x = 0 if the constraints x ≥ 0 are
given separate treatment.)

3. The second line in (3) is often referred to as complementary slackness. Indeed, if λi is the i the constraint’s
shadow price, then it can only be nonzero when the constraint is tight. In exactly the same way as with the
equality constraints, the Lagrange multipliers λ are the constraints’ shadow prices.

4. If there is an equality constraint h(x) = 0 involved, by rewriting it as h(x) ≥ 0 and −h(x) ≥ 0, assigning
the Lagrange multiplier λ1 to the first one and λ2 to the second one, one gets the term (λ1 − λ2)h(x) in the
lagrangian, and then lets λ = λ1 − λ2. I.e., the Largange multiplier for an equality constraint – as we know
– is unsigned.
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5. Finally I copy from the long handout how KT implies the duality theory for LP. Consider the manufacturing
problem Max cT x, such that x ≥ 0 and Ax ≤ b, x ∈ Rn

+, b ∈ Rm.

Denote f(x) = cT x and g(x) = b − Ax. From linearity of the constraints, CQ are always satisfied:
the gradients of the constraints are the rows of A, which are linearly independent. Also, in fact, all the
functions involved are both convex and concave, and so KT are necessary and sufficient, because when one
has convexity, as we know, a local extremum is the global one. As LP singles out the constraints x ≥ 0
from the rest, let us introduce Lagrange multipliers λ ∈ Rm

+ for the constraints Ax ≤ b and µ ∈ Rn
+ for the

constraints x ≥ 0.

The Lagrangian (note: there are plus signs, due to Max) is

L(x, λ,µ) = (cT + µT )x + λT (b−Ax),

and by KT, x̂ is the maximum production strategy if and only if together with some λ̂ ≥ 0, it satisfies the
inequalities/equations:

λT A ≥ cT + µT , cT x = λT Ax,

Ax ≤ b, λT b = λT Ax,
x,λ,µ ≥ 0.

In other words, λ̂ is an optimal solution for the dual problem min λT b for λ ≥ 0, such that λT A ≥ cT ,
reached when λ̂

T
b = cT x̂. Recall that for a pair (x, λ) of feasible solutions of the primal Ax ≤ b and

the dual λT A ≥ cT problems, one always has λT b ≥ cT x by the so-called weak duality theorem: to get it
just multiply the primal from the left by λT , the dual from the right by x and compare, using that both
x, λ ≥ 0).

Complementary slackness theorem is also there: by definition of λ̂, a component λ̂i may be positive only if
the ith constraint for the primal is satisfied as an equality. In the same fashion, the jth feasibility inequality
for the dual optimal solution (shadow price) λ̂ may not be an equality only if the corresponding component
of x̂ is zero, that is the decision variable xj is free (the dual inequalities for the basic components of x̂ are

satisfied as the equalities). The vector µ̂T = λ̂
T
A− cT , whose components µ̂j may be strictly positive only

for non-basic j, shows the amount by which the market price cj should increase, so that j becomes basic,
that is the optimal pair (x̂, λ̂) should change, as µj < 0 is not allowed. So it gives a reduced cost of the
non-basic decision variable xj .

Of course, the same can be done when the primal problem is not the MP, but Canonical form, which involves
equalities. Then the Lagrange multipliers λ, or the shadow prices, will be unsigned and solve the dual
problem.
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