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Abstract. The multifractal decomposition of Gibbs measures for conformal iterated

function system is well known. We look at a finer decomposition which also takes
into account the rate of convergence. This is motivated by work by Olsen in the

self-similar case. Our study of this finer decomposition involves investigation of the

variance of Gibbs measures. This is a problem of independent interest.

0. Introduction

Hausdorff dimension is one of the most useful and effective tools in understanding
the nature of fractal sets. For example, given a Cantor set X in the real line we
can describe its “size” in terms of its Hausdorff dimension [5]. Often we want to
consider subsets defined in terms of measures. Let us denote by B(x, r) = {y ∈
X : d(x, y) < r} a ball of radius r > 0 about a point x ∈ X then given a reference
probability measure ν on a set X and we can associate its pointwise dimension at
x by

dν(x) = lim
r→0

log ν(B(x, r))

log r
,

when it exists. Multifractal analysis describes the dimension of the sets of points
x for which the limit takes a given value [6], [13], [18]. A particularly successful
theory can be developed in the context of dynamically defined sets. Let us consider
a dynamically defined Cantor set X supporting a suitable probability measure ν.
More precisely, let X be the limit set for a C2 iterated function scheme satisfying
the strong separation condition and let ν be a self-similar measure ν, with respect
to a Hölder potential g : X → R. Let T : X → X be the associated expanding
map. The multifractal spectrum of ν describes the set of points whose (symbolic)
pointwise dimension function takes different values. We can first decompose the
limit set X as

X =
⋃

α∈R

Xα ∪X∞

where Xα = {x : dν(x) = α}, for α ∈ R, and X∞ denotes the points for which
the limit dν(x) doesn’t exist. The usual (symbolic) multifractal spectrum of the
measure ν describes the Hausdorff dimension F(α) = dimH(Xα) of these sets.
This important function has been extensively studied by several authors (e.g., [14],
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[9],[3],[11], [16]). In this paper we want to consider a finer structure of these sets.
More precisely, we define, for each γ ∈ R

+,

Xα,γ =

{

x : lim sup
n→+∞

log ν(B(x, |(Tn)′(x)|−1) − α log |(Tn)′(x)|−1

√
n log logn

= γ

}

.

We can then write
Xα =

⋃

γ∈R+

Xα,γ ∪Xα,∞

where Xα,∞ is the set of point such that the limit supremum isn’t finite. A more
refined multifractal spectrum is therefore given by F(α, γ) = dimHXα,γ. Our main
result is the following.

Theorem. Assume that g and α log |T ′| ◦ π do not differ by a coboundary and a
constant. For sufficiently large γ we have that F(α, γ) = F(α).

Our motivation for this result was an interesting paper by Olsen. In particular,
Olsen [10] established a similar result in the special case of self-similar maps and
Bernoulli measures. We present an alternative dynamical approach which has the
advantage that it extends to C2 dynamically defined sets X and Gibbs measures.
In section 6 we consider other applications of these results. An integral part of our
analysis is the study of the variance of Gibbs measures which is of independent
interest.

1. Iterated function schemes

We recall the definition and basic facts about iterated function schemes. An
iterated function scheme consists of a family T1, · · · , Tk : [0, 1] → [0, 1] of C2 con-
tractions. The limit set X = X(T1, · · · , Tk) is the smallest closed set for which
∪k

i=1Ti(X) = X. We assume that they satisfy the strong separation condition,
i.e., the sets Ti(X) are pairwise disjoint and X will be a Cantor set. We use the
following definitions.

Definition. Let T : X → X be the locally expanding map defined by

T (x) = T−1
i if x ∈ Ti(X).

Given 0 < α ≤ 1, for g : X → R we write

|g|α = sup
x6=y

{ |g(x)− g(y)|
|x− y|α

}

.

For any compact set Y ⊂ R, the space of α-Hölder continuous functions Cα(Y ) =
{g : |g|α < +∞} is a Banach space with norm ||g||α = |g|α + |g|∞.

Definition. Let pi : [0, 1] → R, i = 1, · · · , k, be Hölder continuous functions such

that
∑k

i=1 pi(x) = 1 and 0 ≤ pi(x) ≤ 1. A measure ν on X is called self-conformal
if there exists such functions pi such that

(p1T
∗
1 µ+ · · ·pkT

∗
k ν) = ν,
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i.e.,
∫

(p1(x)w(T1x) + · · · + pk(x)w(Tkx))dν(x) =
∫

w(x)dν(x), for any continuous
function w : X → R.

The self-conformal measures fall into a broad class of measures. Let g : X → R

be a Hölder continuous function. We define the pressure P (g) of g by

P (g) = sup{h(T, µ) +

∫

gdµ : µ = T -invariant probability measure},

where h(T, µ) is the entropy of the measure µ with respect to the transformation
T .

Definition. A Gibbs measure for g ∈ Cα(X,R) is an invariant probability measure
on T such that

1

C
≤ µ(Tx0

◦ · · · ◦ Txn
(X))

egn(x)−nP (g)
≤ C (1.1)

where gn(x) = g(x)+g(Tx)+ · · ·+g(T n−1x). The sets Tx0
◦ · · ·◦Txn

(X) are called
cylinders.

A Gibbs measure is always ergodic. If µ is a Gibbs measure for g then P (g) =
h(T, µ) +

∫

gdµ. A self-conformal measure is necessarily a Gibbs measure with
respect to the function g(x) = log px0

(Tx), where x ∈ Tx0
(X).

Lemma 1.1. If we assume that
∑k

i=1 e
g(Tix) = 1 then we have that

min
x

{egn(x)} ≤ µ(Ti0 ◦ · · · ◦ Tin−1
(X))

e−nP (g)
≤ max

x
{egn(x)}.

Given a probability measure ν we define its Hausdorff dimension to be the infi-
mum of the Hausdorff dimensions of Borel sets of full measure.

Definition. We can define the (symbolic) pointwise dimension at x ∈ X by

dν(x) = lim
n→+∞

log ν(B(x, |(Tn)′(x)|−1))

log |(Tn)′(x)|−1
,

providing the limit exists.

In the case of Gibbs measures µ the Federer property holds, i.e., there exists
λ > 1 and C1 > 1 such that for every x ∈ X and r > 0 we have that

ν(B(x, λr)) ≤ C1ν(B(x, r)).

There exists C2 > 0 such that x, y ∈ Ti0 ◦ · · · ◦ Tin−1
X we have that

C−1
2 ≤ |(Tn)′(x)|

|(Tn)′(y)| ≤ C2.

Thus for any x ∈ Ti1 ◦ · · · ◦ Tin
X we have that

C−1
1 λ−N ≤ ν(Ti0 ◦ · · · ◦ Tin−1

X)

ν(B(x, |(Tn)′(x)|−1))
≤ C1λ

N ,
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where N is chosen so that λN > C2, and

C−1
2 ≤ diam(Ti0 ◦ · · · ◦ Tin−1

X)

|(Tn)′(x)|−1
≤ C2.

Thus for ν the (symbolic) pointwise dimension coincides with

dν(x) = lim
n→+∞

log ν(Ti0 ◦ · · · ◦ Tin−1
X)

log diam(Ti0 ◦ · · · ◦ Tin−1
X)

,

and with the usual pointwise dimension. Let Σ =
∏∞

0 {1, · · · , k} be a full shift
space on k-symbols and let σ : Σ → Σ denote the shift given by (σx)n = xn+1. Let
π : Σ → X be the natural coding defined by

π(x) = lim
n→+∞

Tx0
· · ·Txn

(0).

Example. The simplest case is where there are linear contractions with rates 0 <
r1, · · · , rk < 1 and a fixed probability vector p = (p1, · · · , pk). In this case, ν = π∗µp

corresponds to the Bernoulli measure µp = (p1, · · · , pk)Z
+

on Σ.

We can define the (symbolic) multifractal spectrum of the measure ν by

F(α) = dimH(Xα)

where Xα = {x : dν(x) = α}. This function has been extensively studied by vari-
ous authors, notably Pesin and Weiss [14], Ledrappier [9], Cawley and Mauldin [3],
Olsen [11]. In [14] the approach taken was to use Gibbs measures and thermody-
namic formalism.

Let Φ : X → R be a Hölder continuous function and ν the associated Gibbs
measure. The multifractal spectrum of µ is described in [14]. We outline their
approach which will be crucial in the rest of this paper. For q ∈ R we define

φq = −t(q) log |T ′(x)| + q(Φ + P (Φ))

where t(q) is chosen to be the unique value such that P (φq) = 0. Let νq be
the Gibbs measure associated with φq. It can be shown that for νq almost all x,
dν(x) = −t′(q). Since t′(q) is a strictly monotone function, we can associate each
value of q to a value of α by α(q) = −t′(q). Using this method [14] gives the
following result.

Proposition 1.1. Let T1, . . . , Tk : [0, 1] → [0, 1] be a conformal C2 iterated func-
tion scheme satisfying the strong separation condition. Let X be the limit set and
a conformal measure ν.

(1) F(α) is analytic and convex in a neighbourhood of α0 = dimH(X) which we
will denote (αmin, αmax).

(2) For α ∈ (αmin, αmax) there exists a measure να such that να(Xα) = 1 and
dν(x) = α, a.e. (να). Moreover, dim να = F(α).

(3) For α ∈ (αmin, αmax), F(α) is given by the Legendre transform of t(q). That
is

F(α) = inf
q
{αq + t(q)}.

To analyze the finer sets F(α, γ) we will use the statistical properties of Gibbs
measures.
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2. Statistical Properties of Gibbs measures

We say that f ∈ C0(X,R) is cohomologous to a constant if there exists u ∈
C0(X,R) and c ∈ R such that f = u ◦ T − u+ c. If µ is a Gibbs measure then the
following analogues of well known statistical theorems hold.

Proposition 2.1 (Law of the Iterated Logarithm) [4]. Let f be a Hölder
continuous function with

∫

fdµ = 0. Assume that f is not cohomologous to a
constant, then there exists γ > 0 such that for a.e. (µ) x we have that

fn(x)√
n log logn

→
√

2γ, as n→ +∞.

Proposition 2.2 (Central Limit Theorem)[1], [4]. Let f be a Hölder contin-
uous function with

∫

fdµ = 0. Assume that f is not cohomologous to a constant,
then there exits γ > 0 such that

lim
n→+∞

µ

{

x ∈ X :
1√
n
fn(x) ≤ t

}

=
1√
2πγ

∫ t

−∞
e−

γy2

2 dy.

We say that f is a lattice function if there exists u ∈ C0(X,R), c ∈ R and
ψ ∈ C0(X, aZ), for some a > 0, such that f = u ◦X − u + ψ + c. Generically the
functions fn will be non-lattice.

Proposition 2.3 (Local Limit Theorem). Let f be a Hölder continuous func-
tion with

∫

fdµ = 0.

(1) Assume that f is a non-lattice function then there exists γ > 0

lim
n→∞

µ {x ∈ X : a ≤ fn(x) ≤ b}
1√
n

(b−a)√
2γ

= 1,

[8], [2, Th 9.2].
(2) Assume that f is a lattice function then provided b− a is sufficiently large

there exists C > 0 (depending on γ) such that

1

C
≤ µ{x ∈ X : a < fn(x) < b}

1√
n

≤ C,

for all n sufficiently large [2, Thm 9.6].

In these three propositions the value of γ is the same.
All of these results are special cases of more general invariance principles [4].

The next lemma relates dynamical properties of the measure ν to the pointwise
(symbolic) dimension of ν on X.

Lemma 2.1. If µ is a Gibbs measure for a Hölder continuous function Φ : X → R

and ν is an ergodic measure then

dµ(x) =

∫

Φ(x)dν − P (Φ)
∫

log |T ′(x)|dν for a.e (ν) x.
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Proof. We first observe that log |(T n)′| =
∑n−1

i=0 log |T ′| and then we can write

lim
n→+∞

1

n
log |(Tn)′(x)| =

∫

log |T ′|dν, a.e. (ν) x. (2.1)

The Gibbs property of µ and the Birkhoff Ergodic Theorem gives that

lim
n→+∞

1

n
logµ[x0, . . . , xn−1] = lim

n→+∞
1

n
(Φn(x) − nP (Φ))

=

∫

Φdν − P (Φ) for a.e.(ν) x.
(2.2)

The proof follows from combining (2.1) and (2.2). �

Definition. The variance of a Gibbs measure ν (with respect to the function g :
X → R) and a Hölder function F : X → R is defined to be

γ(X, ν) := lim
n→+∞

1

n

∫

(

n−1
∑

i=0

F (T ix) −
∫

Fdν

)2

dν(x)

The proof of convergence of this limit, and alternative definitions, appear in [12]
and [2]. The variance plays a key role in the following result which start are analysis
of the finer multifractal spectrum F(α, γ). It is a simple extension to the non-linear
case of Proposition 1.1 in [10].

Lemma 2.4. Let µ be a self-conformal measure corresponding to a Gibbs measure
with potential Φ which is not cohomologous to a constant. Fix q ∈ R and α = −t′(q).
If γα is the variance of f(x) = Φ(x)−P (Φ)−α log |T ′(x)| then F(α) = F(α,

√
2γα).

Proof. It can be deduced from the work in [15] that
∫

fdµ = 0. Thus by the Law
of the Iterated Logarithm (Proposition 2.1) for να we can write

lim sup
n→∞

fn(x)√
n log logn

=
√

2γα, for a.e. (να).

This completes the proof. �

We would like to replace γα by other values γ. In order to see this we would
like to consider other Gibbs measures µ′ (associated to suitable Hölder continuous
functions g′ : X → R) which satisfy the following properties:

(1) the variance is γ = γ(µ′); and
(2) the measure µ′ has the same limit

α = lim
n→+∞

log ν′(B(x, |(Tn)′(x)|−1))

log |(Tn)′(x)|−1
=

(∫

fdµ′ − P (f)
)

∫

log |T ′|dµ′ (2.3)

for a.e. (ν′) x ∈ X. In particular we look for Gibbs measures µ′ such that
∫

fdµ′ = 0 for the function f defined in Lemma 2.4. This property implies
(2.3).

In the next two sections we shall consider this problem in detail.
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3. Estimating the variance of Gibbs measures

The variance appears in a number of different statistical properties, as we saw
in the last section, and so estimating its value is a problem of independent interest.
For example, the variance appears in a number of statistical properties of hyperbolic
systems (e.g., Propositions 2.1, 2.2 and 2.3). In practice, we shall use a well known
characterization of the variance in terms of the second derivative of the pressure
[17],[12]. The differentiability of the pressure is most conveniently studied using
a characterization in terms of transfer operators. In order to work at a fairly
general level, assume that u, v : X → R are any two Hölder continuous functions.
Let Cα(X) denote the α-Holder continuous functions. We can define a transfer
operator Lu : Cα(X) → Cα(X) by

Luh(x) =
∑

Ty=x

eu(y)h(y).

We want to consider two simple normalization hypotheses.

Hypothesis I. Assume that Lu1 = 1.

Hypothesis II. Assume that Luv = 0.

In order to show that these assumptions can be made without any significant
loss of generality, first recall that the Gibbs measure and variance are unchanged
by adding coboundaries and constants to functions.

Lemma 3.1. Given any u we can find w ∈ Cα(X) such that u′ = u+w ◦T −w−
P (u) satisfies hypothesis I.

Proof. This is a standard result [12]. �

Let µ denote the unique Gibbs state associated to u. If Lu1 = 1 then L∗
uµ = µ

[12]. We require the following result on the spectrum of Lu : Cα(X) → Cα(X).

Lemma 3.2. The eigenvalue 1 for Lu is simple. Moreover, the spectral radius of
the operator L − µ : Cα(X) → Cα(X) is strictly smaller than 1. More precisely,
there exist 0 < ρ < 1 and C > 0 such that ||Ln

uv||α ≤ Cρn||v||α, for all v ∈
Cα(X)and n ≥ 1.

Proof. The proof appears, for example, in [12] �

We can now this lemma to prove the following.

Lemma 3.3. Assume hypothesis I. Then given any v with
∫

vdµ = 0 we can find
r ∈ Cα(X) such that v′ = v − rT + r satisfies hypothesis II.

Proof. We can define r =
∑∞

n=1 Ln
uv. This converges to a function in Cα(X),

because of the spectral properties of the operator L − µ described in Lemma 3.2.
Since Lu1 = 1 we have that LuUT = I, where UT v = v ◦ T . In particular, Luv

′ =
Luv+Lu(r−UT r), but since Lu(r−UT r) = Lur− r = −Luv, by construction, we
see that Luv = 0. �
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Lemma 3.4. Under hypothesis I and hypothesis II we have that γ =
∫

v2dµ.

Proof. Let λ(u) be the maximal eigenvalue of the operator Lu. The variance γ is

also characterized by γ = d2λ(u+tv)
dt2

[12]. This essentially follows from perturbation
theory on the eigenvalue equation Lu+tvh(t) = λ(t)h(t). The first derivative of
both sides of this identity gives

Lu+tv(vh(t) + h′(t)) = λ′(t)h(t) + λ(t)h′(t).

When t = 0, we have λ′(0) = 0 and λ(0) = 1 and so

Lu(h′(0)) = Lu(v + h′(0)) = h′(0). (3.1)

Since 1 is a simple eigenvalue for Lu, with constant eigenfunction, we deduce that
h′(0) is a constant function. The second derivative of both sides of the identity
gives

Lu+tv(v2h(t) + 2vh′(t) + h′′(t)) = λ′′(t)h(t) + 2λ′(t)h′(t) + λ(t)h′′(t).

We can evaluate this second expression at t = 0. We can then integrate both sides
with respect to µ, and since µ = L∗

uµ we have that

µ(v2h(0)) + 2µ(vh′(0)) + µ(h′′(0))

= λ′′(0)µ(h(0)) + 2λ′(0)µ(h′(0)) + λ(0)µ(h′′(0)).
(3.2)

Since λ(0) = 1 we can cancel the last terms on each side. By hypothesis II, we know
(by considering the expression (3.1)) that h′(0) = 0, which eliminates an extra term
on each side of (3.2) and leaves the identity

λ′′(0) =
µ(v2h(0))

µ(h(0))
.

However, by hypothesis I we have that h(0) = 1 and, by the usual normalization,
µ(h(0)) = 1. This gives the result. �

Unfortunately, we first have to accept the following limitation if we consider only
T -invariant probabilities.

Corollary. Under hypotheses I and II we can bound

(inf v)2 ≤ γ = λ′′(0) ≤ (sup v)2.

If we don’t assume hypotheses I and II we get a similar result. Applying Lemmas
3.1 and 3.3, changes the function v by at most a coboundary and a constant.
Furthermore, the variance is unchanged by adding a coboundary and a constant
(since the pressure is unchanged by adding coboundaries to u and v).

Example. We can consider the special case of locally constant functions u and v
which are constant on each inverse branch Ti(X) and a self-similar iterated function
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system. In this case the Gibbs measure µ for u is a projection of Bernoulli measure
on the Bernoulli shift Σ associated to a vector p = (p1, · · · , pk), where

pi =
e−ui

e−u1 + · · ·+ e−uk

and ui is the value u(x) which takes on Ti(X). Assuming hypothesis II, the variance
in this case can be calculated to be

γ =

k
∑

i=1

piv
2
i .

where vi is the value v(x) which takes on Ti(X).

Returning to the application we are interested in, the corollary suggests that we
need to look at a broader class of measures. More precisely, for n ≥ 2 we shall
consider the probability measures on X which are T n-invariant, rather than the
more restrictive assumption of being T -invariant.

4. Invariant measures for T n

Given α, γ > 0, we want to consider invariant measures να,γ for which the local
dimension dν(x) at almost all points is the same with respect to either να or να,γ .
The measure να,γ can be used to give a lower bound on dimH(Xα,γ). However, we
see from the previous section that it is not enough to consider T -invariant Gibbs
measures and we need to consider T n-invariant Gibbs measures, for n ≥ 2.

Definition. Let Mn denote the space of T n-invariant Gibbs measures on X.

Clearly, the T -invariant measures µ are also contained in Mn. The next lemma
compares the variances for these two points of view.

Lemma 4.1. Let f be a Hölder continuous function and let µ be a T -invariant
Gibbs measure.

(1) h(Tn, µ) = nh(T, µ)
(2) If γ(Tn, µ, fn) is the variance for the function fn with respect to T n and µ

then γ(T, µ, f) = 1
n
γ(Tn, µ, fn)

Proof. The first part is Abramov’s Theorem. For the second part, we observe that

γ(T, µ, f) = var(φ, µ) : = lim
k→+∞

1

k

∫

(

k−1
∑

i=0

f(T ix) −
∫

fdµ

)2

dµ(x)

= lim
k→+∞

1

nk

∫

(

nk−1
∑

i=0

f(T ix) −
∫

fdµ

)2

dµ(x)

=
1

n
lim

k→+∞

1

k

∫

(

nk−1
∑

i=0

fk(Tnix) −
∫

fdµ

)2

dµ(x)

=
1

n
γ(Tn, µ, fn).

This completes the proof. �

Considering µ as an element of Mn leads to a similar formulation of the variance.
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Lemma 4.2. Let µ ∈ M be a Gibbs measure with potential g satisfying hypothesis
I (with respect to T ). Assume that f satisfies hypothesis II then it corresponds to
a measure in M with potential gn satisfying hypothesis I (with respect to T n) and
fn satisfies hypothesis II.

Proof. Let us denote by Lg,T and Lgn,T n the transfer operators in each case. Since
Lg,T (h ◦ T ) = h and Lgn,T n = Ln

g,T we see that Lgn,T n1 = 1 and Lgn,T nfn = 0,

i.e., they satisfy hypothesis I and II (with respect to T n). �

We can use the following estimates to arrange the variance to be higher. If i is
a finite word and x ∈ X then we let Tix = Ti0 ◦ · · · ◦ Tin−1

(x).

Lemma 4.3. There exist D,E > 0, such that for all n ≥ 1 and x, y we can bound
for |i| = n

|fn(Tix) − fn(Tiy)| ≤ D and |gn(Tix) − gn(Tiy)| ≤ E.

Proof. We can bound

|fn(Tix) − fn(iy)| ≤
n−1
∑

k=0

|f(T kTix) − f(T kTiy)|

≤
n−1
∑

k=0

Cθα(n−k)

≤ Cθ

1 − θ
= D

where θ = maxi{||T ′
i ||∞} < 1 and α,C > 0 are constants coming from the Hölder

continuity of f . Similarly, we can bound the expression for g. �

From the definition of a Gibbs measure µ for g with P (g) = 0, we have the
following result.

Corollary. For any cylinder of length n we can bound

egn(Tix)−E ≤ µ(TiX) ≤ egn(Tix)+E

The following lemma will prove useful later.

Lemma 4.4. Assume that
∫

fdµ = 0. If f is not a coboundary, then we can find
periodic points Tmx = x and Tmx′ = x′ such that fm(x) < 0 and fm(x′) > 0.

Proof. By Livsic’s theorem, we know that fm(x) = 0 whenever Tmx = x is equiv-
alent to f being a coboundary [12]. If f is not a coboundary, then there must
be either a periodic point Tmx = x such that Tm(x) > 0 or a periodic point
Tmx′ = x′ such that Tm(x′) < 0. However, it is easy to see that both cases must
exist simultaneously. We then take the least common multiple to complete the
proof. �

We can assume without loss of generality that Tx = x and Tx′ = x′ are both
fixed points. Let us denote by δ = f(x) > 0 and δ′ = f(x′) < 0.

Notation. Given n ≥ 1, let j denote the word of length n corresponding to the
cylinder containing x. Let k denote the word of length n corresponding to the
cylinder containing x′.

Definition. Let Gε(n) be the set of cylinders i containing at least one point y for
which |fn(y)| ≤ ε.
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Lemma 4.5. There exists C1 > 0 such that

1

C1
√
n

≤ µ(Gε(n)) ≤ C1√
n
,

for all n ≥ 1.

Proof. By the Local Limit Theorem (Proposition 2.3) we can deduce that there
exists C ≥ 0

1

C
√
n
≤ µ{x : |fn(x)| < ε} ≤ C√

n

for all n sufficiently large. We can cover the set by cylinders Ci of length n which
contain points xi ∈ Ci for which fn(xi) < ε. Recall that by Lemma 4.3 we can
bound |fn(x) − fn(y)| ≤ D, for x, y ∈ Ci (where D is independent of n). Thus we
see that

∪iµ(Ci) ≤ µ{x : |fn(x)| < ε+D}

This completes the proof. �

We can define for each word i of length n

αi(x) =
fn(Tix) − fn(Tkx)

fn(Tjx) − fn(Tkx)
.

As n → +∞, the terms αi(x) converges to δ′

δ+δ′
. For every β ∈ [0, 1] we want to

replace egn(x) by a new weight function eg(β)
n (x) defined by

eg(β)
n (Tix) = (1 − β)egn(Tix) if Ti ∈ Gε(n)

eg(β)
n (Tjx) = egn(Tjx) + β

∑

i∈Gε

αi(x)e
gn(Tix)

eg(β)
n (Tkx) = egn(Tkx) + β

∑

Ti∈Gε

(1 − αi(x))e
gn(Tix)

and for all of the other inverse branches there is no change from egn(x).

Lemma 4.6. The transfer operator L
g
(β)
n

for g
(β)
n and Tn satisfies

L
g
(β)
n

1 = 1 and L
g
(β)
n
fn = 0.

Proof. Both of these properties follow from the definition of g
(β)
n . For the first part

simply observe that

L
g
(β)
n

1 − Lgn1 = −β
∑

i∈Gε

egn(ix) + αi(x)e
gn(Tix) + (1 − αi(x))e

gn(Tix) = 0.

For the second equality we fix x and note that

αi(x)f
n(Tjx) + (1 − αi(x))f

n(Tkx) = fn(Tix).
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We then have

L
g
(β)
n
fn(x) − Lgnfn(x)

= −β
∑

i∈Gε

egn(Tix)fn(Tix) + αi(x)e
gn(Tix)f(Tjx) + (1 − αi(x))e

gn(Tix)f(Tkx)

= −β
∑

i∈Gε

egn(Tix)fn(Tix) + β
∑

i∈Gε

egn(Tix)fn(Tix) = 0

which completes the proof. �

Let µβ be the unique measure such that L∗
g
(β)
n

µβ = µβ . By construction we have

that

µβ [Tj(X)] ≥ min
x

{eg
(β)
n (Tjx)}

≥ min
x

{egn(Tjx) + β
∑

i∈Gε

αi(x)e
gn(Tix)}

≥ α0β
∑

i∈Gε

min{egn(Tix)}

≥ α0βe
−2E

∑

i∈Gε

µ[Ti(X)]

≥ α0β

C1e2E

1√
n
,

by Lemma 4.5. We can estimate
∫

(fn)2dµ ≥ (δn−D)2µ[TjX] + (δ′n+D)2µ[Tk] (4.1)

This brings us to the following.

Proposition 4.1. Let f be a Hölder continuous function not cohomologous to 0
and µ be a Gibbs measure with

∫

fdµ = 0 and variance γα. Let γ > γ0. We can
choose n ≥ 1 and a measure µ such that

(i)
∫

fndµ = 0

(ii)
1

n

∫

(fn)2dµ = γ

(iii)
|dimH(µ) − dimH(µ)| < ε

Proof. The first part follows from Lemma 4.6. The third part is based on the
identities dimH(µ) = h(µ)/

∫

log |T ′|dµ and dimH(µ) = h(µ)/
∫

log |T ′|dµ (cf. [6]),
which one sees are arbitrarily close for n sufficiently large. We prove part (ii) in two
steps. Firstly we fix γ > γ0 it can be seen from equation (4.1) that it is possible to
find n ≥ 1, β ∈ [0, 1] and µ̄β a Tn invariant measure such that

1

n

∫

(fn)2dµβ ≥ γ.
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The second part is to show that the map h : [0, 1] → R given by

h(β) =
1

n

∫

(fn)2dµβ

is continuous. Since 1
n

∫

(fn)2dµ0 = γ0 the result then follows by the intermediate
value theorem. Since L

g
(β)
n
µβ = µβ and µβ is a simple eigenvector for an isolated

eigenvalue by perturbation theory β → µβ is continuous in the weak* topology
([17],[12]). The continuity of h is then immediate. �

5. Proof of Theorem 1

We are now in a position to prove Theorem 1. Let µ be a self-conformal measure
corresponding to a Gibbs measure with potential φ and an expanding map T . We
fix α in the region where F(α) is defined. Let

f(x) = φ(x) − P (φ) − α log |T ′(x)|.

The conditions imposed on φ in the statement of the theorem imply that f is not
cohomologous to a constant. It follows from [14], [13] that we can find a Gibbs
measure να with potential g such that dim να = F(α) and

∫

fdνα = 0 hence giving
dµ(x) = α for να almost every x by Birkhoff’s Ergodic Theorem. The following
Lemma also holds.

Lemma 5.1. By adding a coboundary, if necessary, we can assume that Lgf = 0
and there exist fixed points x and x′ such that f(x) > 0 and f(x′) < 0.

Proof. The first part follows from Lemma 3.1 and Lemma 3.2. The second part
follows from Lemma 4.4 �

Let γ0 be the variance of f with respect to να. Fix γ > γ0. All the conditions
for Proposition 4.1 are satisfied so for any ε > 0 we can choose n ≥ 1 and a T n

invariant ergodic probability measure να such that

(i)
∫

fndνα = 0

(ii)
1

n

∫

(fn)2dνα = γ

(iii)
|dimH(να) − dimH(να)| < ε.

It follows by the law of the iterated logarithm that

lim sup
k→∞

fnk(x)√
k log log k

=
√

2nγ

for να almost all x. Let l = nk +m where 0 ≤ m ≤ n− 1 and we have that

f l(x)√
l log log l

=
fnk+m(x)

√

(nk +m) log log(nk +m)
=

fnk(x) + fm(Tnk(x))
√

(nk +m) log log(nk +m)
.
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Since fn(x) is uniformly bounded we then have that

lim sup
l→∞

f l(x)√
l log log l

= lim sup
k→∞

fnk(x)
√

nk log log(nk)
=

1√
n

lim sup
k→∞

fnk(x)√
k log log k

.

Thus

lim sup
l→∞

f l(x)√
l log log l

=
√

2γ.

This suffices to complete the proof of Theorem 1.

6. Subshifts and Horseshoes

We can use the same method to study subshifts of finite type. Let A denote a
k× k matrix with entries 0 and 1. Assume that A is irreducible. Let us denote the
one-sided shift space by

Σ+ =
{

x = (xn) ∈ {1, · · · , k}Z
+

: A(xi, xi+1) = 1
}

.

Let σ : Σ+ → Σ+ be the one sided subshift of finite type defined by (σx)n = xn+1.
A function w : Σ+ → R is called Hölder continuous if there exists 0 < θ < 1 such

that

||w||θ := sup

{ |w(x) − w(y)|
θn

: xi = yi, for 0 ≤ i ≤ n− 1

}

.

Let [x0, · · · , xn−1] = {y ∈ Σ+ : xi = yi, 0 ≤ i ≤ n − 1}. The sets [x0, · · · , xn]

are called cylinders. A Gibbs measure for a Hölder continuous function g : Σ+ → R

is an invariant probability measure on Σ+ if there exists C > 0 and P = P (f) such
that

1

C
≤ µ([x0, · · · , xn−1])

egn(x)−nP (g)
≤ C, (6.1)

for all n ≥ 1, where gn(x) = g(x) + g(σx) + · · · + g(σn−1x). By analogy with
our previous definitions, we can define the variance of µ and a Hölder function
F : Σ+ → R by

var(φ, µ) := lim
n→+∞

1

n

∫

(

n−1
∑

i=0

F (σix) −
∫

Fdµ

)2

dµ(x)

The proof of the main theorem for iterated function schemes gives the following
variant for one sided subshifts of the law of the iterated logarithm.

Proposition 6.1 (Law of the Iterated Logarithm for one sided subshifts). Let

µ be a σ invariant Gibbs measure such that
∫

φdµ = 0. Let γ0 =
√

2var(φ, µ). For
every γ > γ0 we have that

dimH

{

x : lim sup
n

φn(x)√
n log log n

= γ

}

≥ dimH µ

In [15] for a Hölder, non-constant function φ : Σ → R Pesin and Weiss consider
the set

Bα =

{

x ∈ Σ : lim
n→∞

φn(x)

n
= α

}

.
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It is shown in [14] that for any α in an open interval, (αmin, α,max ), we have that
there exists a Gibbs measure να such that να(Bα) = 1 and dimBα = dim να. It
follows that if we let f = φ− α then

∫

fdνα = 0. Thus we can use Proposition 6.1
to study the properties of the finer sets

Bα(γ) =

{

x : lim sup
n→∞

φn(x) − nα√
n log logn

= γ

}

.

We then have the following corollary to Proposition 6.1.

Corollary. Let γα = var(f, να). For γ ≥ γα we have that

dimBα(γ) = dimBα.

We note that it can be easily deduced from the work of Fan and Schmeling, [7]
that dimBα(0) = dimBα and dimBα(∞) = dimBα.

Let us next define the two sided shift space by

Σ =
{

x = (xn) ∈ {1, · · · , k}Z : A(xi, xi+1) = 1, for i ∈ Z
}

Let σ : Σ → Σ be the two sided subshift of finite type defined by (σx)n = xn+1.
In this case we say that a function w : Σ → R is Hölder continuous if there exists
0 < θ < 1 such that

||w||θ := sup

{ |w(x) − w(y)|
θn

: xi = yi, for − (n− 1) ≤ i ≤ n− 1

}

.

We have the corresponding version of the law of the iterated logarithm for two
sided shifts.

Proposition 6.2 (Law of the Iterated Logarithm for two sided subshifts). Let

µ be a σ invariant Gibbs measure such that
∫

φdµ = 0. Let γ0 =
√

2var(φ, µ). For
every γ > γ0 we have that

dimH

{

x : lim sup
n

φn(x)√
n log log n

= γ

}

≥ dimH µ

We can reduce the proof for two sided shifts to that for one sided subshifts. We
recall the following useful results.

Lemma 6.1. Given a Hölder continuous function φ : Σ → Σ there exists a
(Hölder) continuous function u : Σ → R such that φ′(x) = φ(x) + u(σx) − u(x)
satisfies (φ′)n(x) = (φ′)n(y), if x, y ∈ Σ satisfy xi = yi, for i ≥ 0 [12].

In particular, φ′ can be identified with a function on the one sided shift space
Σ. We can replace φ by φ′ without loss of generality.

Lemma 6.2. There exists C > 0, such that if x, y satisfy xi = yi, for i ≥ 0 then
|φn(x) − φn(y)| ≤ C, for each n ≥ 0.

Proof. Since |φ(σix) − φ(σiy)| ≤ ||φ||θθi for 0 ≤ i ≤ n − 1 we have that |φn(x) −
φn(y)| ≤ ||φ||θ

1−θ
. �
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Proof of Proposition 6.2. We begin by observing that by Lemma 6.2 if x, y satisfy
xi = yi, for i ≥ 0 then

lim sup
n

φn(x)√
n log logn

= lim sup
n

φn(y)√
n log logn

.

In particular,

dimH{x ∈ Σ : lim sup
n

φn(x)√
n log logn

= γ}

= dimH{ξ ∈ Σ+ : lim sup
n

φn(ξ)√
n log log n

= γ} + dimH Σ−

= dimH{ξ ∈ Σ+ : lim sup
n

φn(ξ)√
n log log n

= γ} +
h(σ)

log θ
,

and

dimH{x ∈ Σ : lim sup
n

φn(x)√
n log log n

= γ0}

= dimH{ξ ∈ Σ : lim sup
n

φn(ξ)√
n log logn

= γ0} + dimH Σ−

= dimH{ξ ∈ Σ : lim sup
n

φn(ξ)√
n log logn

= γ0} +
h(σ)

log θ
,

where

Σ− =

{

x = (xn) ∈
−1
∏

−∞
{1, · · · , k} : A(xi, xi+1) = 1 for i < −1

}

and dimH Σ− = h(σ)
log θ

. The result then follow from Proposition 6.1. �

Finally, we consider a more geometric setting. Let f : Λ → Λ be a C2 Smale
horseshoe and let Φ : Λ → R be a Hölder continuous function which is not co-
homologous to a constant. The definitions of Gibbs measures and variance are in
complete analogy with those given before. We have the following related result.

Proposition 6.3 (Law of the Iterated Logarithm for horseshoes). Let µ be

a Gibbs measure such that
∫

Φdµ = 0. Let γ0 =
√

2var(Φ, µ). For any γ > γ0 we
have that

dimH{x : lim sup
n

Φn(x)√
n log logn

= γ} ≥ dimH µ

Proof. We can model f by a two sided subshift σ : Σ → Σ. By choosing a Markov
Partition P = {T1, · · · , Tk} we can associate a continuous semi-conjugacy map
π : Σ → Λ. Each element Ti is foliated by stable manifolds W s(x, Ti) = {y ∈
Ti : fnx, fny ∈ Tin

, n ≥ 0}. We can define an equivalence relation x ∼ y if
y ∈W s(x, Ti) and the equivalence classes are described by Σ+. We can consider the
one dimensional expanding map S : X → X where X =

∐

i Ti/ ∼ corresponds to
identifying Λ along the stable manifolds on each element of the Markov Partition.
Since the lamination by stable manifolds is C1+α, for some α > 0, the corresponding
map S : X → X is C1+α. As before we can show that the sets of points whose
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Birkhoff sums for Φ (restricted to some representative unstable leaf) have the same
dimension if we assume the limit supremum is γ or γ0. Moreover, the dimension
of the set of points in Λ which are the union of those lying in a piece of stable leaf
containing a point from the first set agrees with the dimension of the set of points
in Λ which are the union of those lying in a piece of stable leaf containing a point
from the second set, using the natural Lipschitz local product structure. The result
then follows. �

7. Final comments

We conclude with some comments on our earlier results.

(1) There is a simple analogue of Proposition 6.1 for the Central Limit Theorem.
For any t > 0, δ > 0 and ε > 0 there exists n ≥ 1 and µ̄ a σn invariant
measure such that dim µ̄ > dimµ− δ and

lim
n→∞

µ̄{x ∈ Σ : − t ≤ 1√
n
fn(x) ≤ t} ≤ ε

(2) If we consider the analogous problem with γ < γ0 then our method of proof
does not give a way to constructing Gibbs measures with less variance. In
this case we only know the much weaker result that if f(α) > 0 then for
any γ > 0 we have f(α, γ) > 0.

(3) The assumption of the strong separation condition was merely one of con-
venience. In the case of iterated function systems the assumption of the
strong separation condition can be weakened to the open set condition.
This method can then be applied, for example, to repellers for conformal
expanding maps to get similar results. This includes one dimension expand-
ing Markov maps. The adjustment needed for this to work is that the Gibbs
measures and potentials are defined on the associated shift space and then
projected on to the iterated function system.
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