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Dimension of Fat Sierpiński Gaskets

Abstract

In this paper we continue the work started by Broomhead, Montaldi and Sidorov

investigating the Hausdorff dimension of fat Sierpiński gaskets. We obtain generic

results where the contraction rate λ is in a certain region.

1 Introduction

Let F = {S1, . . . , Sk} be a family of contractions on R
d. It was shown in [5] that there

exists a unique non-empty compact set Λ(λ), called the attractor of F , such that,

Λ(F ) = ∪k
i=1Si(Λ(F )).

In the case where the contractions are similarities and a technical condition called the open
set condition (OSC) is satisfied it is a straight forward problem to calculate the Hausdorff
dimension of Λ(F ) (see [3]). Not satisfying the OSC essentially means that the images
si(Λ(F )) overlap in a non trivial manner. In this case calculating the Hausdorff dimension
of the attractor of the IFS becomes a much more difficult question. We study a specific case
in R

2.
The fat Sierpiński gasket was introduced by Simon and Solomyak in [10]. It is defined

to be the attractor, Λ(λ) ⊂ R
2 of the IFS, F = {T0, T1, T2} where,

T0(x) = λx

T1(x) = λx + (1, 0)

T2(x) = λx +

(

1

2
,

√
3

2

)
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for λ > 1
2 . In proposition 3.3 of [10] they show that there exists a dense subset, A ⊂ [ 1

2 , 1√
3
],

such that for all λ ∈ A, dimH Λ(λ) < − log 3
log λ

.

A systematic investigation of the Hausdorff dimension of Λ(λ) was started by Broomhead,
Montaldi and Sidorov in [2]. They were able to compute the exact Hausdorff dimension of
Λ(λ) when λ is in a special class of algebraic numbers they call the multinacci numbers.
These are the positive solutions, ωn, to the equations

∑n
k=1 λk = 1. In particular ω2 is equal

to the reciprocal of the golden ratio. They obtain the following result,

Theorem 1 (Broomhead, Montaldi, Sidorov).

dimH(Λ(ωn)) =
log τn

log ωn

,

where τm is the smallest positive root of the polynomial 3zn+1 − 3z + 1.

It should be noted that log τn

log ωn
< − log 3

log ωn
.

In this paper we continue the investigation into the Hausdorff dimension of Λ(λ). The
following is our main result.

Theorem 2. 1. For almost all λ ∈ [ 12 ,
3
√

4
3 ≈ 0.529],

dimH Λ(λ) = − log 3

log λ
.

2. For almost all λ ≥ 0.5853,
dimH Λ(λ) = 2.

Our methods only enable us to show that dimH Λ(λ) = 2 for almost all λ ≤ 0.649.
However it is clear that for all λ ≥ 2

3 , dimH Λ(λ) = 2 and in [2] it is shown that for all
λ ≥ 0.648, Λ(λ) has non-empty interior and hence Hausdorff dimension 2. It should be
noted that the results in [10] and [2] mean that the equality in Theorem 2 certainly does not
hold for all λ. It would be interesting to know whether the region of λ for which Theorem
2 is true can be extended to a larger region. However the method used in this paper only
provides almost sure lower bounds for λ ∈ (0.529, 0.5853] which are strictly less than − log 3

log λ
.

Theorem 2 has the following topological analogue.

Corollary 1. 1. There exists a residual set A ⊂ [ 12 ,
3√4
2 ] such that for any λ ∈ A,

dimH Λ(λ) = − log 3

log λ
.

2. There exists a residual set B ⊂ [0.5853, 1] such that for any λ ∈ B

dimH Λ(λ) = 2.
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Figure 1: Λ(λ) for λ = 0.59. Theorem 2 states that for almost all λ > 0.5853, dimH Λ(λ) = 2.
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Figure 2: Λ(λ) for λ = 0.521. Theorem 2 shows that for almost all λ ∈ [0.5, 0.529]
dimH Λ(λ) = − log 3

log λ
.
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Figure 3: Λ(λ) for λ = ω4 ≈ 0.519. It is shown in [2] that dimH Λ(λ) = log τ4

log ω4
≈ 1.654 <

− log 3
log ω4

. Theorem 2 shows that this is an exceptional value.

Hence the results found in [2] and [10] in the above region were exceptional cases both
in a topological and measure theoretic sense.

It is notationally more convenient to look at a slightly different IFS. This is defined by
the similarities,

T0(x) = λx

T1(x) = λx + (1, 0)

T2(x) = λx + (0, 1).

However the attractor of this IFS can be obtained by an affine transformation applied to
the set Λ(λ) and hence has the same Hausdorff dimension. There has been a lot of study of
overlapping IFS’s in one dimension ([12],[9],[8],[11]). Most of this work has used the idea of
transversality introduced in [9] to obtain generic results. Typically these results compute the
Hausdorff dimension of the attractor for a set of full measure. Various work has been done
on lower semi-continuity of the dimension overlapping IFS. This includes unpublished work
by Pollicott and Simon-Solomyak as well as the published work by Jonker and Veerman [6].
Using this work it is often possible to compute the Hausdorff dimension for a residual set
(a subset which contains a dense countable intersection of open sets). We examine cross
sections to enable us to use the method of transversality which has been so effective in the
one-dimensional setting.
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2 Definitions and Technical Lemmas

For a set F ⊆ R
n the s-dimensional Hausdorff dimension is defined by

Hs(F ) = lim
ε→0

inf
{

∑

|ui|s | {ui}i is a finite or countable ε-cover of F
}

.

The Hausdorff dimension of F is then defined as,

dimH F = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) = ∞}.

For a probability measure µ on R
n the Hausdorff dimension is defined by,

dimH µ = inf{dimH F : µ(F ) = 1 and F is a Borel set}.

The mass distribution principle can be used to show the following equality concerting the
dimension of a measure,

dimH µ = ess-sup

{

log µ(B(x, r))

log r
: x ∈ R

n

}

. (1)

Here ess-sup means the essential supremum.
We now prove a slight variation of the potential theoretic method for calculating lower

bounds of Hausdorff dimension, [3]. For more details and links to generalised dimension see
[4].

Lemma 1. Let A ⊆ R be a Borel set and α, s ∈ (0, 1] . If there exists a measure µ on A

such that,
∫ (∫

dµ(x)

|x − y|s
)α

dµ(y) < ∞ (2)

then dimH A ≥ s and dimH µ ≥ s.

Proof. Let φµ(y) =

(∫

dµ(x)

|x − y|s
)

. If the inequality (2) holds for a measure µ on a set A

then it follows that (φµ(y))α is integrable with respect to µ. This means that there exists
M such that,

AM = {y : (φµ(y))α ≤ M}
satisfies µ(AM ) > 0. Thus we can define a measure ν simply by the restriction of µ to AM .
Hence for any x ∈ A,

M
1
α ≥

∫

A

dν(x)

|x − y|s ≥
∫

B(x,r)

dν(y)

|x − y|s ≥ 1

rs
ν(B(x, r)).

Thus for any x ∈ A, ν(B(x, r)) ≤ M
1
α rs and by the mass distribution principle dimH A ≥ s

and dimH µ ≥ s.
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We also need a lemma which relies on the idea of transversality of a power series. This
idea was first used in [9] and has since been the main tool in investigating IFS with overlaps.
A power series g is said to satisfy the ε-transversality condition if g crosses any line within
ε of the origin with slope at most −ε. Consequences of transversality include the absolute
continuity of Bernoulli convolutions ([12],[8]) and almost sure results for the dimension of
several fractal families ([9],[11]). Consider power series of the form,

g(x) = 1 +

∞
∑

k=1

gkxk, with gk ∈ {−1, 0, 1}. (3)

Let
b(1) = inf{λ > 0 : ∃g(x) of the form (3) such that g(λ) = g′(λ) = 0}.

Thus for any 0 < a < c < b(1) and any g of the form (3) there exists ε > 0 such that for any
λ where |g(λ)| < ε, |g′(λ)| ≥ ε. Thus any power series of the form (3) where λ takes values
less than c for some c < b(1) satisfies ε-transversality for some ε. Peres and Solomyak have
computed values for b(1) (Lemma 5.2 in [8]) . They obtain,

b(1) ≈ 0.649.

This allows us to prove the following Lemma which is almost identical to Lemma 2 in [9].

Lemma 2. For any interval I = [a, c] where 0 < a < c < b(1), s < 1 and any {ak}k∈N

where a0 6= 0 and ak ∈ {0,±1} there exists K(s) such that,

∫

I

dλ

|a0 +
∑∞

n=1 anλn|s ≤ K(s).

Proof. From above we know there exists ε > 0 such that if |g(λ)| ≤ ε then |g′(λ)| ≥ ε for
any λ ∈ [a, c]. This allows exactly the same method of proof as used to proof Lemma 2 in
[9].

The tool which allows us to use these one-dimensional methods to obtain a result about
a subset of R

2 is a generalisation of the Marstrand slicing theorem, [7]. It also appears in
[3] as Corollary 7.12 and it is stated and proved as Theorem 4.1 in Chapter 3 of [1].

Lemma 3. Let F be any subset of R
2, and let E be a subset of the y-axis. Let Ly =

{(x, z) ∈ R
2 : z = y}. If dimH(F ∩ Lx) ≥ t for all y ∈ E, then dimH F ≥ t + dimH E.

3 Biased Bernoulli convolutions

Let λ ∈ [0.5, 0.649 . . .] and p = (p0, p1) be a probability vector. We let,

T0(x) = λx

T1(x) = λx + 1.
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Let ν = ν
p0,p1

λ be the self-similar measure such that for all J ⊂
[

0, 1
1−λ

]

,

ν(J) = p0ν(T−1
0 (J)) + p1ν(T−1

1 (J)).

We will also let µ = µp0,p1 be (p0, p1)-Bernoulli measure defined on the sequence space,
{0, 1}N. We let Πλ : {0, 1}N → R be defined by,

Πλ(i) =

∞
∑

n=0

inλn.

This gives ν
(p0,p1)
λ = µ(p0,p1) ◦Π−1

λ . We will also use the following notation: |i∧ j| = min{k :
ik 6= jk}, Wω,k = {τ ∈ Ω : τj = ωj : j ≤ k}, Wk consists of all kth level cylinders,

[i, 0, i1, . . . , ik−1] = {j : ir = jr for 0 ≤ r ≤ k − 1}

and kr(i) = card{0 ≤ j ≤ k − 1 : xj = r}.

Proposition 1. Fix (p0, p1). For almost all λ ∈ [0.5, 0.649 . . .],

dimH ν
(p0,p1)
λ = min

(

p0 log p0 + p1 log p1

log λ
, 1

)

.

This result could be deduced as a Corollary to Theorem 7.2 in [11]. However in the
present simpler setting it is possible to construct a more elementary proof which is based
on methods used in [8].

Proof of Proposition 1

The proof of the upper bound is standard. Note that by the strong law of large numbers,

lim
n→∞

1

n
log µ([i0, . . . , in−1]) → p0 log p0 + p1 log p1 for µ-almost all i.

Thus for all ε > 0 there exists N such that for all n ≥ N

νλ(B(Πλi, λn))) ≥ n(p0 log p0 + p1 log p1 − ε)

for µ almost every i. However because νλ = µ ◦ Π−1
λ

log(νλ(B(x, λn)))

log λn
≤ p0 log p0 + p1 log p1 − ε

log λ

for νλ almost all x. Hence by (1) the proof of the upper bound is complete.
For the lower bound the following lemma is needed. It involves the use of an exponent

α ∈ (0, 1]. The idea to use this exponent came from [8].
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Lemma 4. Fix (p0, p1). For all α ∈ (0, 1] we have that for almost all λ ∈ [0.5, b(1)]

dimH ν
(p0,p1)
λ ≥ min

(

log((pα+1
0 + pα+1

1 )
1
α )

log λ
, 1

)

.

Proof. Fix (p0, p1) and let ε > 0.

For simplicity denote d(α, ε) = (pα+1
0 + pα+1

1 + ε)
1
α . We let Sε(λ) = min

(

log(d(α,ε))
log λ

, 1 − ε
)

.

We use Lemma 1 together with Fubini’s theorem and Lemma 2.

I =

∫ b(1)

0.5

∫ (∫

dνλ(x)

|x − y|Sε(λ)

)α

dνλ(y)dλ =

∫ b(1)

0.5

∫

(

∫

dµ(i)

|Πλ(i) − Πλ(j)|Sε(y)

)α

dµ(j)dλ

Apply Fubini’s theorem and Hölder’s inequality
∫

fα ≤ C(
∫

f)α for α ∈ (0, 1].) to give,

I ≤ C

∫

(

∫ b(1)

0.5

∫

dµ(i)dλ

|Πλ(i) − Πλ(j)|sε(λ)

)α

dµ(j)

≤ C1

∫

(

∫ b(1)

0.5

∫

dµ(i)dλ

|∑∞
n=0(in − jn)λn|sε(λ)

)α

dµ(j)

≤ C1

∫







∫ b(1)

0.5

∫

dµ(i)dλ
(

λ|i∧j| |a0 +
∑∞

n=1 anλn)
∣

∣

∣

sε(λ)







α

dµ(j)

where an ∈ {−1, 0, 1} for n ≥ 1 and a0 ∈ {−1, 1}. We now use Lemma 2 to continue,

I ≤ C1

∫







∫ b(1)

0.5

∫

dµ(i)dλ
(

d(α, ε)|i∧j| |a0 +
∑∞

n=1 anλn|
)sε(λ)







α

dµ(j)

≤ C1

∫

(

∫ b(1)

0.5

dλ

|a0 +
∑∞

n=1 anλn|sε(λ)

∫

dµ(i)

d(α, ε)|i∧j|

)α

dµ(j)

≤ C2

∫ (∫

dµ(i)

d(α, ε)|i∧j|

)α

dµ(j)

≤ C2

∫

( ∞
∑

k=0

µ(Wω,k)

d(α, ε)k

)α

dµ(ω)
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We proceed by using the inequality (
∑

i bi)
α ≤∑i bα

i for bi > 0 and α ∈ (0, 1]

I ≤ C2

∞
∑

k=0

∑

w∈Wk

µ(W )α+1

d(α, ε)αk

≤ C2

∞
∑

k=0

d(α, ε)−αk(pα+1
0 + pα+1

1 )k.

Thus because d(α, ε)α > pα+1
0 + pα+1

1 we have I < ∞. Hence by Lemma 1 dimH νλ ≥
min

(

d(α,ε)
log λ

, 1 − ε
)

for almost all λ. To complete the proof we let ε = 1
n

for n ∈ N and let

n → ∞.

To complete the proof of Proposition 1 we let αn = 1
n

for n ∈ N and observe that,

lim
n→∞

log(pαn+1
0 + pαn+1

1 )

αn log λ
=

p0 log p0 + p1 log p1

log λ
.

4 Cross sections of fat gaskets

Consider a sequence {in} ∈ {0, 1, 2}N we can then represent each point in Λ(λ) using the
expansion,

∞
∑

n=0

ain
λn,

where a0 = (0, 0), a1 = (1, 0) and a2 = (0, 1). It should be noted that for λ > 1
2 this

expansion is not unique. Consider a sequence x ∈ {0, 1}N. Intuitively we think of the
case when xn = 0 as corresponding to the bottom two triangles in the gasket and xn=1
corresponding to the top triangle. We then define a complementary sequence j ∈ {0, 1}N

such that jn = 0 whenever xn = 1. The idea of this sequence is to determine a horizontal
point on the gasket corresponding to the sequence x. Thus whenever xn = 0 there are two
choices either 0 or 1 corresponding to the bottom two triangles in the gasket. However
when xn = 1 there is just the one choice and jn must equal 0. This means if we define
i ∈ {0, 1, 2}N such that

in =







0 if xn = 0, jn = 0
1 if xn = 0, jn = 1
2 if xn = 1, jn = 0

then
( ∞
∑

n=0

jnλn,

∞
∑

n=0

xnλn

)

=

( ∞
∑

n=0

ain
λn

)

∈ Λ(λ).

Thus if we let,
LΠλ(x)(Λ(λ)) = {z ∈ R : (z, Πλ(x)) ∈ Λ(λ)}
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then for any sequence i ∈ {0, 1}N such that in = 0 if xn = 1 we have that Πλ(i) ∈
LΠλ(x)(Λ(λ)).

We look at the dimension of the set LΠλ(x)(Λ(λ)). We will fix (p0, p1). Let µ = µp0,p1 be

(p0, p1)-Bernoulli measure on {0, 1}N. We can define another measure µ̃x on {0, 1}N such
that,

µ̃x({i : in = 0}) =

{

1 if xn = 1
1
2 if xn = 0

.

This means for kth level cylinders,

µ̃x([i0, . . . , ik−1]) =

{

0 if ∃j such that ij = xj = 1
2−k0(x) if for all xj = 1 we have ij = 0

.

Intuitively this means whenever xk = 0 this corresponds to the bottom two triangles in the
gasket and we have a choice of the two triangles but whenever xk = 1 we are in the top
triangle in the gasket so there is only one choice.

Let ν̃λ,x = µ̃x ◦ Π−1
λ and note that it is supported on a subset of LΠλ(x)(Λ(λ)).

Lemma 5. For almost all λ ∈ [0.5, 0.649 . . .], and for νλ almost all y ∈ R

dimH Ly(Λ(λ)) ≥ min

(

−p0 log 2

log λ
, 1

)

.

Proof. We shall show that for all α ∈ (0, 1],

dimH LΠλ(x)
(Λ(λ)) ≥ − log(1 − p0(1 − 2−α))

α log λ
,

for almost all λ and µ almost all x ∈ {0, 1}N . The result then follows because if we let
αn = 1

n
for n ∈ N then,

lim
n→∞

log(1 − p0(1 − 2−αn))

αn log λ
= −p0 log 2

log λ

and if dimH LΠλx(Λ(λ)) ≥ s for µ-almost all x ∈ {0, 1}N then dimH Ly(Λ(λ)) ≥ s for νλ

almost all y ∈ R. Let ε > 0 and for simplicity let d(α, ε) = (1 − p0(1 − 2−α) + ε)
1
α and

sε(λ) = min
(

− log d(α,ε)
log λ

, 1 − ε
)

. We use the measure ν̃λ,x. Using the potential theoretic

method for calculating Hausdorff dimension it suffices to show that,

I =

∫ b(1)

0.5

∫ (∫ ∫

dν̃λ,x(y)dν̃λ,x(z)

|z − y|sε(λ)

)α

dµ(x)dλ < ∞.
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We start by lifting to the sequence space, using Fubini’s theorem and Hölder’s inequality,
∫

fα ≤ C
(∫

f
)α

for α ∈ (0, 1].

I =

∫ b(1)

0.5

∫

(

∫ ∫

dµ̃x(i)dµ̃x(j)

|Πλ(i) − Πλ(j)|sε(λ,α)

)α

dµ(x)dλ

≤ C

∫

(

∫ b(1)

0.5

∫ ∫

dµ̃x(i)dµ̃x(j)dλ

|∑∞
n=0(in − jn)λn|sε(λ,α)

)α

dµ(x)

≤ C1

∫

(

∫ b(1)

0.5

∫ ∫

dµ̃x(i)dµ̃x(j)dλ

|a0 +
∑∞

n=1 anλn|sε(λ,α)
λ|i∧j|sε(λ,α)

)α

dµ(x)

≤ C1

∫

((

∫ b(1)

0.5

dλ

|a0 +
∑∞

n=1 anλn|sε(λ,α)

)

(∫ ∫

dµ̃x(i)dµ̃x(j)

d(α, ε)|i∧j|

)

)α

dµ(x),

where a0 ∈ {−1, 1} and an ∈ {−1, 0, 1} for n ≥ 1. This means we can apply Lemma 2.
Hence

I ≤ C2

∫ (∫ ∫

dµ̃x(i)dµ̃x(j)

d(α, ε)|i∧j|

)α

dµ(x)

≤ C2

∫

( ∞
∑

k=0

2−k0(x)

d(α, ε)k

)α

dµ(x)

As in the proof of Lemma 4 we use the inequality (
∑

i bi)
α ≤∑i bα

i for bi > 0. We get,

I ≤ C2

∞
∑

k=0

d(α, ε)−αk

∫

2−k0(x)αdµ(x)

≤ C2

∞
∑

k=0

d(α, ε)−αk
∑

[i0,...,ik−1]∈Wk

2−k0([i0,...,ik−1])αµ(Wk)

≤ C1

∞
∑

k=0

(p02
−α + p1)

k

(dα,ε)αk
.

We can now see that I < ∞ because p02
−α + p1 = 1 − p0(1 − 2−α) < d(α, ε). To finish the

proof let ε = 1
n

for n ∈ N and let n → ∞.

5 Proof of Theorem 2

It is a standard result that dimH Λ(λ) ≤ − log 3
log λ

for all λ, see, for example, [3]. Let p = ( 2
3 , 1

3 ),

let µp be the standard p-Bernoulli measure on {0, 1}N and let νλ = µp ◦Π−1
λ . We know from
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Proposition 1 that for almost all λ ∈ [ 12 ,
3√4
3 ],

dimH νλ =
1
3 log

(

1
3

)

+ 2
3 log

(

2
3

)

log λ

and by Lemma 5 that for almost all λ ∈ [ 12 ,
3√4
3 ] and νλ almost all y ∈ R

dimH Ly(Λ(λ)) ≥ −
2
3 log 2

log λ
.

Thus using Lemma 3 we have that,

dimH Λ(λ) ≥
1
3 log

(

1
3

)

+ 2
3 log

(

2
3

)

log λ
−

2
3 log 2

log λ
= − log 3

log λ

for almost all λ ∈ [ 12 ,
3
√

4
3 ].

To proof part 2 of Theorem 2 we need to take an alternative choice of probability vector.
For example if we choose p = (0.7729, 0.2271) then

0.7729 log0.7729 + 0.2271 log0.2271

log 0.5853
≥ 1 and − 0.7729 log2

log 0.5853
≥ 1.

Thus by letting νλ = µp ◦Π−1
λ and applying Proposition 1, Lemma 5 and Lemma 3 we have

that,
dimH Λ(λ) = 2

for almost all λ ∈ [0.5853, b(1)]. It is shown in [2] that Λ(λ) has non-empty interior for all
λ ≥ 0.648 . . . < b(1). Thus dimH Λ(λ) = 2 for almost all λ ≥ 0.5853.

6 Proof of Corollary 1

We shall only prove part 1. of Corollary 1 because the proof of part 2 can be done using
exactly the same method. The method is similar to the proof of Theorem 2.3 in [10]. From

Theorem 2 we know there exists a dense set of λ ∈ [ 12 ,
3√4
3 ] such that dimH Λ(λ) = − log 3

log λ
.

Let F be the set of all IFS’s, {Si}2
i=0 in R

2 such that Si(x) = λx+ bi for bi ∈ R
2. We define

a topology on F by the natural bijection from F to [ 12 ,
3√4
3 ] × R

6.
From Theorem B in [6] we know that the function α(F ) = dimH(Λ(F )) is lower semi-

continuous. However since for a fixed λ, dimH(Λ(F )) is constant. The function, α′(λ) =
dimH(Λ(λ)) is also lower semi-continuous. If we let β(λ) = − log 3

log λ
then we have that β is

continuous and α′(λ) ≤ β(λ). We now show that
{

λ ∈
[

1

2
,

3
√

4

3

]

: α′(λ) = β(λ)

}

=

{

λ ∈
[

1

2
,

3
√

4

3

]

: α′ is continuous at λ

}

. (4)
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Recall that a subset F ⊂
[

1
2 ,

3
√

4
3

]

is said to be residual if it contains a dense Gδ set. Firstly

consider λ ∈
[

1
2 ,

3√4
3

]

such that α′ = β(λ). We know that β is continuous and α′ < β is lower

semi continuous thus α′ is continuous at λ. On the other hand α′ cannot be continuous at
λ if α′ 6= β(λ) because α′(λ) = β(λ) for a.e. λ ∈

[

1
2 ,

3√4
3

]

. This completes the proof of (4).

The set of continuity points for any function is a Gδ set. Hence the set of points where
α′ = β(λ) contains a dense Gδ set.
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