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ABSTRACT. In this article we study certain conformal iterated function schemes in
two dimensions which are natural generalizations of the Sierpinski carpet construc-
tion. In particular, we consider scaling factors for which the open set condition fails.
For such ‘Fat Sierpinski carpets’ we study the range of parameters for which the
dimension of the set is exactly known, or for which the set has positive measure.

0. INTRODUCTION

In this note we want to study a simple conformal iterated function scheme which
fails to satisfy the standard open set condition. Let 0 < A < 1. Given n > k we
want to consider a family of n conformal contractions T; : R? — R? of the form

T, : (z,y) — (Aa, Ay) + (S, ¢?),

i=1,...,n, where (cgl),cgz)) €{(,) €2?: 0 < j,1 <k— 1} are n distinct points
in a k x k grid. There is then a unique smallest closed set Ay such that Ay =
U T;(Ay). In the special case that A = %, the sets A% are the well-known Sier-

pinski carpets. If A € (0, %) then the contractions satisfy the open set condition
and A, is a Cantor set whose dimension we can easily compute as

_logn
log A’

In this note we shall extend this equality to a strictly larger parameter set of
A. Unfortunately, we cannot expect this identity to hold on a larger interval since
it is easy to see that there are examples with a countable dense set of exceptional
values € C |7, ﬁ] such that for A € £ we have (0.1) fails. Our first result extends

these results to a larger set.

The diagrams were drawn using Bob Devaney’s programme Fractalina and the numerical calcu-
lations done using Mathematica. We would like to thank Nikita Sidorov for useful conversations.
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Theorem 1. There exists % < s < -~ such that for almost all \ € (%, s] we have
dimg (Ay) is given by (0.1).

9

We can give an explicit estimate for s. More precisely, we denote the number of
images in the jth row by n; = Card{l <I<k: cz(-l) :j}, for j=1,... k. If we

Assume that n; > 1, then we can take

l =
k n k n
)1 .y .
S = min — n. n (O . 2)
J ) 7
n .
Jj=1 =1
dim A
H
positive Contains open set
measure
a.e.
/
Open set / almost
condition, everywhere
A
Uk s 1Ynv2 t

FIGURE 1. EXTENDING THE REGIONS WHERE DIMENSION IS KNOWN

The following is a simple Corollary to Theorem 1.

Corollary. There exists a dense Gs set G C [%,s] such that for A\ € G we have
dimg (Ay) is given by (0.1).

Proof. This follows from the semi-continuity of the map A — dimg(Ay) [19], [6]. O

Providing A is sufficiently large, we might expect the set to have positive measure.
An ingredient in the study of this problem is a development of the idea transversality
[16]. This leads to a technical constraint in proving these theorems which requires
that ¢ < bx_1..., a transversality constant. For example, by = 0.649... and
ba = 0.5.

Theorem 2. There exists ﬁ <t < bg_1 such that for almost all A € [t,br_1] we
have that leb(Ay) > 0.

We can give an explicit estimate for ¢t = t(nq,... ,ng):
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Ezample 1: The Sierpinski triangle. Let k = 2 and ¢; = (0,0), c2 = (1,0) and
cs = (0,1). Broomhead, Montaldi and Sidorov computed the dimension of Ay
at certain exceptional values w, \, 0, called multinacci numbers, characterised as
roots of 3x" ™ — 3z + 1 (e.g., wo = 0.618..., w3 = 0.543 ..., wy = 0.518... etc.)
[4].

Jordan established Theorem 1 with s = 23 /3 = 0.529.... [7]. Theorem 2 applies
with ¢ = 0.5852... (corresponding to the choice g2 = 0.7729...). For comparison,
in [4] it is shown that for A > 0.647... the set A, contains open sets.

FIGURE 2. SIERPINSKI GASKET WHERE (I) A = 0.5 AND (11) A = 0.525

Example 2: The Sierpinski carpet. Let k=3 and cq, ... ,cg are all but the central
square. In Theorem 1, we can take s = (33233%)% /8 = 0.338851.... In Theorem
2, we can take t = 0.357... (corresponding to the choices ¢ = g3 = 0.416... and
qo = 0.168.. .).1

FIGURE 3. SIERPINSKI CARPETS WHERE (I) A = 3 AND (1) A = 0.338

Ezample 3 : Vicsek set. Let k=3 and let ¢y, ... ,c5 correspond to a cross. In this

case s = (33)5 /5 = 0.386636.... and ¢ = 0.4541.

These are summarised in the following table.

Shape % s ﬁ t
Triangle 0.5 0.529... 0.577... 0.585...
Carpet 0.333... 0.338... 0.353... 0.357 - -
Cross 0.333... 0.386... 0.447 ... 0.454 . ..

LOne trivially sees that one could choose t = %, since for A > % we have that A, is a square,

and thus has positive measure.
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FIGURE 4. VICSEK SETS WHERE (I) A = 3 AND (11) A = 0.386

In sections 1 we formulate a general result on projections of measures. In sections
2 and 3 we develop the technical results. The proof of Theorem 1 is completed in
section 3. In sections 4 and 5 we give the proof of Theorem 2. In section 6, we
consider generalizations.

1. SUBSHIFTS AND INVARIANT MEASURES.

Let ¥, ={1,2,--- ,n}Z+ be the space of sequences and let o : ¥,, — ¥,, be the
full shift on n symbols defined by (0x), = x,41. Let Iy : X, — R? be defined by

() = i Cx, A
m=0

The (two dimensional) fat Sierpinski carpet Ay C R? is defined by

Ay = {HA(.@) = Z Co A" X = (T ) € En} .

m=0

Let ¥, = {1,2,... ,k’}ZJr. We can define a factor map p : ¥,, — Xj by (p(x)); =
c&.) where ¢,, = (a&?,cﬁ)), for i € Z*. Let II) : ¥, — R be defined by IIy(ym,) =

Z;::o YmA™. We can associate a closed set Ay C R to ¥ defined by

Ay = {ﬁx(y) = YmA" Y= (Ym)eo € Ek} -

m=0

Let 7 : R? — R be the horizontal projection 7(z,y) = y on the vertical axis. Then
we can write IT op=molly.

Let pu be an ergodic shift invariant probability measure on X,,. The image 1t :=
p(u) of punder p : 3, — ¥y, is defined by fi(A) = u(p~tA), where A C ¥ is Borel.
The probability measure @z is an ergodic shift invariant probability measure on Y.

The measure i projects to a measure vy = IIx(u) on Ax. The Hausdorff dimen-
sion dimpg(vy) of vy is defined to be the infimum of the Hausdorff dimension of
Borel sets of full vy-measure. The projection 7y = m(vy) of the measure defined by
Ux(B) = vx(B xR), where B C R is a Borel subset. We can also write 7y = II)(z).

Let h(p) denote the entropy of o : (X,,u) — (X,, 1) and let h(z) denote the
entropy of o : (X, 1) — (Zk, ) [22]. Our main technical result is the following.
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Theorem 3. For almost all \ € [l L] we have that:

k> yn
( ) h(g) — h(p) — h() ,
dimp (13) = =0 ! { log )\ log\ } = L)
h(pw) — (@) h(p) : '
dimg (vy) [ { log)\ W} , _log)\} otherwise .

Remark. Assume that there are two adjacent squares in the carpet. It is easy to

show that there are a dense set of values £ C [%, \/Lﬁ] such that for A € £ we

have dimg (Ay) < —igg?\. More precisely, for N suitably large, appropriately small

changes in A can cause two Nth level squares (of size AV) to coincide. This results

h(p)
log A

in a drop in the dimension. This suffices to show that dimg(vy) < — for any

fully supported measure cf. [19].

2. HAUSDORFF DIMENSION, PROJECTIONS AND TRANSVERSALITY

In this section we recall some definitions and basic properties. Given 4, ¢ > 0 we

can define
H(A) = {i{r}f} {Z (diam(Ui))‘S} ,

where the infimum is over all covers {U;} for A where sup,{diam(U;)} < e. The §-
0

i)} <
dimensional Hausdorff dimension of A is defined by H?(A) = lim~ o H’(A). Finally,
the Hausdorff dimension of A is defined by

dimy (A) = inf { H°(A) =0} .

A key technical device is transversality. This was first introduced in [16], but
subsequently refined and developed by Peres, Solomyak and others [20], [13]. The
following version is useful in the sequel.

Proposition 2.1 [13]. Given k > 2 and 0 < s < 1 there ewists by > + and

K = K(s) > 0 such that for )
(i) any sequence a,, € {—k,... , k}, n>1; and
(ii) any ap € {—k,...,k} —{0},

we have that

< K.

/bk d\
o lao+ 302, anm|®

The first few values of b,, can be estimated numerically [13]: by = 0.649..., by =
0.5, b3 =0.427..., by = 0.371..., b5 = 0.325... and afterwards b, = (1 + /n)~!

The dimension of the one-dimensional measure 7 has been studied by Simon,
Solomyak and Urbanski, who showed the following result.

Proposition 2.2 [20]. For almost all 0 < A\ < bi_1 we have that

dimp (V) = min{l, _1};@} .
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3. CONDITIONAL ENTROPY

We begin by recalling a few basic properties of the entropy of an invariant mea-
sure u. Let a = {[0],[1],...,[n]} be the standard generating partition for %,,.
Given N > 1, we can associate x € ¥,, to a cylinder

[.TO,,.TN_l]:{yGZnyj:fE],OS]SN—]-}

of length N. We denote by \/f\i 6104 the partition consisting of all such cylinders and
entropy H, (\/fl_oloz). The entropy h(p) of o: (X, 1) — (X5, 1) is defined by

. 1 N—1
h(p) = nl{lfoo NHH (Vico' @)
The asymptotic measure of a cylinder is given by the Shannon-McMillan-Brieman
Theorem, i.e., For a.e. (u) x € ¥,

h{p) = — Jlm % log i ([xo, ..., xn-1])
22], [14, p.261].

Let B(X,,) be the Borel sigma algebra for ¥,,, and let B(Xj) be the Borel sigma
algebra for X;. Let A = p~'B(X;) C B(X,) be the corresponding o-invariant
sub-sigma algebra (i.e., the sigma algebra which does not distinguish between the
symbols in {1,... ,n} which project to the same symbol in {1,...,k}).

We let H,,(P|C) denote conditional entropy of a partition P, with respect to a
sigma algebra C.

Notation. The conditional entropy of o : (X, ) — (X, 1) with respect A is given
by
1
M) = tim o, (VI alA).

N—-+oco

[1],[15], [10]. In particular, h(ulA) < h(w).

We can unique decompose the probability measure u by

H(A) = / e (p € 0 A)dp(e)

for any Borel set A C 3, [18, §1.7], where we denote by ¢ the conditional prob-
ability measures on the fibres p~1(£) (£ € Xk). A set X C %, satisfies u(X) =1
precisely when there is a set Y C Xj with (YY) = 1 such that ue(p~ ¢ N X) = 1,
for all £ € Y. The following result can be viewed as an analogue of the Shannon-
McMillan-Brieman Theorem on the fibres p~1(¢), and is appears in the work of
Ledrappier and Young [9].

Proposition 3.1 (cf. [9]). For a.e.(u) x € 3,

1 _ -1
]g_)mo_ Ogﬂé([$0, 7]5\va 1] mp (g)) — h(M‘A)

(Equivalently, the result holds for a.e.(i) & € Xy and a.e.(ue) x € p~*(€).)
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Proof. We briefly recall the idea of the proof (cf. [9, Lemma 9.3.1]). We can identify

\/fiala_ioz with the partition of cylinders of length N and

—log pie ([xo, - .. ,an] Np~'E) = IV o al A)(z),

where I(-|-) denotes the usual conditional information function. We see that

1 N—1 —Z ]-N_l —k N 1 _—14
NI(\/_ oz|.»4):ﬁ I(o7FaAV (Voo "a))
k=0
| Nl
= I(oz|TkA\/( vl a))oak
k=0

— /I (alAV (V2i07%a)) dp, a.e.(p)

by the Martingale Theorem [14, p.262] and using T'4 = A. Finally, we observe that
the limit can be identified with h(u|A) = H (a| AV (V2,0 ")), as required. [

Let €,d,m7 > 0. By Proposition 3.1 we can choose a set X C X, with u(X) > 1-4§
and K > 0 such that for x € X we have that:

pelzo, ... ,xn] < Kexp(— (h(p]A) —e) N), for N > 1.

We can denote X, = {£ € g : pe(p~ ¢ N X) > 1—n}, then n(1 —a(y,)) < 4,
ie, 12 <m(X,).
Finally, we recall a classical result that relates the entropies of p and .

Proposition 3.2 (Abramov-Rohlin). h(u) = h(n) + h(u|A).
(cf. [1], [14, p.256], [10], [3]).

4. DIMENSION OF THE INDUCED MEASURE ON FIBRES

Let L, = {(z,y) : * € R} denote the horizontal line at height y. Given £ € ¥y,
we can use the conditional measure g on p~!(£) to define a measure vy ¢ on the
line Ly, (¢) by vae = 1 (fg). Our main result in this section is the following.

Proposition 4.1. For almost every X € [1,by_1] there exists a set Y C R with
dimg (Y) = dimg (vy) such that for any & € ()Y C 3, we can bound

h
dimg (vy,¢) > min {—%, 1} :
Proof. 1t suffices to show that, given § > 0, for almost all A € [%, b1] there exists a
set X = X5 C Xy, with i(X) > 1 —6 such that for any £ € X, dim(vg ») > %.
In particular, we can take Y = Np2, X1.

Fix €, > 0. There exists a set X C X and a constant K > 0 such that
f(Xe) >1—¢€ and for any { € X there exists Yo such that for any z € Xo:

pelzo, ... ,xn] < Kexp(— (h(p]A) —e) N), for N > 1. (4.1)
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h(uIA)

Denote s = — 2e. We want to apply the mass distribution method with

the measure p restrlcted to X and the measure vy ¢ restricted to II\ (Y. ), where
¢ € Xo. This allows us to use the explicit bound (4.1). Consider the multiple

integral
o Y., JIL Y, \x - y| .

We want to prove finiteness by lifting v¢ \ to pe on p~ 1€ and then using Fubini’s
Theorem to rewrite the integral as:

= / / / /:_1 T, (4) i)\HA( )|sdu§( i)dpe (7)dp(€)
- / / / /:_1 \fo_l(ij—jn) s e @)dne (1))
:/6/ // /:1 e(h(M|A)—26)|z/\C§|>|\ZiLo:Oaﬂ)\n|s ¢(@)dpe(j)du(§)

where we denote

i A j| =min{l : is = js,0 < s < U},

and we have that a, € {0,%+1,...,£(k — 1)} and ap # 0. Thus we can use
transversality (Proposition 2.1) to write

I< C/ / / e MHAT2INT Gy (3)dpse (§)da(€)

<C Z e~ M IAT2) (10 5 p1e) ({(i,j) € Yo x Yo 1 ig = jp,0 < a <m})

m=0

<OKY emmul A 20 (il dyeom < 4o

m=0

In particular, from the finiteness of (4.2) we deduce that that for almost every
A € [%,br—1], there is a set Y = Y (X\) C II,(X) of 7 measure 1 — ¢ such that for

y € Y one can choose £ € ﬁ;l(y) such that

d x)d
[ i)
.Y, JI\Y,, |x—y|

The mass distribution principle shows that dimg (v ¢) > s. Finally, since € > 0
was arbitrary, the result follows. [J

The following corollary will prove particularly useful.

h(plA) 1}

Corollary. dimg(vy) > dimyg (7)) — min{ Tog X

Proof. Fix € > 0. We can choose X C A, with v3(X) = 1 and dimy(X) <
dimg (vy) + €. Using a variant on the Marstrand Slice theorem (cf. [5], [2]) we can
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bound
dimyg (v) + € > dimpy(X)

> dimy (Y) — min { Pl A) 1} |

> dimgy (7)) — min {

Since € > 0 is arbitrary, the result follows. [J

Proof of Theorem 3. The inequality dimgy (vy) < —% for (2.1) is easily seen to
hold for all 0 < A < 1. More precisely, by the Shannon-McMillan-Brieman theorem

we have that

) 1
h(p) = JMim —logpu(lzo, ... zn-1])

N—+o0
for a.e. (u) x € ¥, where [zg,... ,an_1]={y X, y; =2;,0<j < N—-1}. In
particular,
1 B(z, \V h
lim sup 2\ (f\; ) < - (,u)v
N—+oo log A log A

gives a bound on the pointwise dimension, and thus for the Hausdorff dimension.
To get the reverse inequality, one can compare Proposition 2.2, Proposition 3.2
and the above corollary. This completes the proof of Theorem 3. [J

+
Proof of Theorem 1. In particular, if we let p = (%, e ,%)Z be the standard
Bernoulli measure then h(u) = logn. In particular, Theorem 1 follows from Theo-

rem 3. [

5. SETS OF POSITIVE MEASURE, PROJECTIONS AND TRANSVERSALITY

We recall that a measure vy on R? is absolutely continuous if for any Borel set
A C R? satisfying leb(A) = 0 necessarily also satisfies v)(A) = 0. The absolute
continuity of the measure 7y (where d = 1) has been studied by Simon, Solomyak
and Urbanski [20], who showed the following nice result.

Proposition 5.1 (Simon, Solomyak and Urbanski). For almost all X in the

. { E,bk_l} - h(7) > —log )\}

the measure Uy = I\Ji is absolutely continuous.

A key ingredient in the proof of 5.1 is the following application of the transver-
sality technique.

Lemma 5.2, [13]. Let & € Xy. There exists C > 0 such that if i,j € p~*(&) then
fora >0

leb {\ € (a,bp_1)  |Tx(i) — Ty (j)| < €} < C (a—w) c.

The following result should be viewed as a two dimensional version of Proposition
5.1.
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Theorem 4. For almost all )\ in the set
1 ) _
{[onm] < minugu) ) = —10g2}

the measure vy = I\pu is absolutely continuous.

For such A the set Ay has positive Lebesgue measure for such A. In particular,
Theorem 2 then follows from Theorem 4.

A key ingredient ingredient in the proof of Theorem 4 is show that typical mea-
sures v¢ are absolutely continuous on L ©) This is contained in the following
result.

Proposition 5.3. For almost all A in

{A c E,bk_l} h(ulA) > —log)\}

there exists a set X C Xy, such that u(X) =1 and for any £ € X the measure vy .
1s absolutely continuous on Lﬁk(ﬁ)'

Proof. Tt suffices to show that given ¢ > 0, there exists a set X C X such
that 1(Xe) > 1 — € and for any £ € X there exists a set Yo ¢ C Lz, () where
pe(Y!) > 1 — € and vy is absolutely continuous on Y. . We can then take
X=Ny2,X1.

Let €, € > 0. From Proposition 3.1 we know that there exists K > 0 and a
set X C ¥y such that @(Xe) and for £ € X there exists Yo ¢ C p~1¢ with
pe(Yerg) > 1 — € and for z € Yo/ ¢ equation (3.1) holds, i.e.,

pelzo, ... ,xn—1] < Kexp(— (h(n]A) —€)N), for N > 1 (5.1).

We recall that the lower pointwise density for vy ¢ (restricted to I Yy ¢) is

defined by
.. Vg(B(.’,U, E) N H)\Y;/ g)
D =1 f =L
D(ve)(w) = lim in 5

To show that v¢ is absolutely continuous it suffices to show that D(v¢)(z) is finite,
for a.e.(vg\) € I1\Ye ¢. In particular, it suffices to show that

/ Q(l/&)\xl‘)dV&)\(IL’) < 4o00.
H>\Y€/7£

Moreover, to show that for almost every A there exists a set of £ of [z measure at
least 1 — € such that vg y is absolutely continuous, it suffices to show that

I= / / E, ( /H . Q(ug,w)dug,m) dF(€)dA < +oo,

providing ¢ is sufficiently large. We take t > e™M#A+2¢ For v, 7 € p~1¢ we define

¢r(w,7) = {A: [IIx(w) = Tx(7)] < 7},
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for r > 0. We start by lifting to the shift space, applying Fatou’s Lemma and
Fubini’s Theorem

Pty [ ] e e amon

< limint / / / ) / | Teb(6r . )i 1)),

r—0

where y is the characteristic function for {(w,7) : [IIx(w) — IIx(7)| < r}. We can
apply Lemma 5.2 and then use Equation (5.1).

[<c / | / | / T () (7)(E)
<c / / / ) / T g ()

<C/ | Z —m(h(ulA)+26)( pe % ig) (Ap) dri(€)

e’ m=0
<CK Z e~ m(h(ul A)+26) gm(h(ulA)te) oo
m=0
where A, = {(T,w) € Yo e X Yo ¢t wy = T1,...,wp = Ty }. This completes the

proof. [

Proof of Theorem 4. By Propositions 5.1 and 5.2 it follows that 7 is absolutely
continuous and there exists a set, X, C Y such that for all { € Xy, vgy is
absolutely continuous on Ly, (¢) for almost all A. We choose A to satisfy these
properties. Let Y C R? be a set such that leb?(Y) = 0. Let G = {y € R :
leb(L,) = 0} then it is clear that leb(G) = 0. Using the decomposition of s,

(V) = p ) = [ e ) np Oame) = [ eI () npam(e)
X

Let T = {¢€ € Xy : pe(M N (Y) Np~2€) > 0}. If € € T then vy ¢(Y N Lig,¢) > 0 and
hence leb(Y N L, ¢ > 0. Thus if £ € T" then II,¢ € G. From the absolute continuity
of 7y it follows that 7)(G) = 0 and so @(I') = 0. Hence vy(Y) = 0 and it follows
that vy is absolutely continuous. [J

Remark 1. In order to derive the bound in (0.3), we can consider the Bernoulli
measure & = (q1, . . . ,qk))ZJr on ¥g. Let p=(J+, ... )Z be the Bernoulli mea-

sure on Y,,. We have that h(n) = — Z?Zl g;logq; and h(p) = — Zj:1 q; log (n—’>
In particular, we see that

h(p|A) = h(p Zq] logn;.

For any (qi, ... ,q) such that k(%) = h(u|.A) we could might choose t = e~ (%) in
Theorem 3.



12 THOMAS JORDAN AND MARK POLLICOTT

Remark 2. 1f we consider p supported on some subshift > on k-symbols then there is
a possibility that the transversality constant can be increased. This was considered
by Solomyak [21]. For example, by recoding by words of length 3 we can restrict to
symbols of the form [x, , 0] to get a subshift o : ¥4 — ¥ 4. This reduces the entropy
to h(o) = %h(a). However, the advantage is that the transversality constant by_1
is also increased, to b1 > % [21]. This technique allows us to extend the absolute
continuity results to larger domains of A

6. COMMENTS AND GENERALIZATIONS

6.1 Limitations on the estimates. It is easy to construct examples for which
there are examples for which one can find an open interval U C [%, ﬁ] for which

dimp (Ay) < =123 for A€ U,

Example 4. Let k = 3 and let ¢y, ... ,c5 correspond to the four corners, plus (1,0)
square. In this case, s = % = 0.3920.... However for A > 0.4 we have that
dimp (Ay) < 1— (22 < -2, For A > 0.4082... we let p be the (3,3, 8, 1, 1)-

Bernoulli measure on 5 and vy the projection of p onto Ay.. Theorem 3 gives
dimg(vy) > 11— llggi for a.e. A > 0.4082... and thus dimg(Ay) =1 — llggi for a.e.
A>0.4082....

6.2 More general contractions. It is easy to see (using an affine transformation
of the plane) that we can consider more general grids C by translating horizontally
each row by the same amount. More generally, we can consider parameterised

)

families contractions Ti(j)‘ : R? — R? of the plane given by

Ty« (z,y) = (F (@), 98 (@, 9))

where fio‘) :[0,1] — [0, 1] and gi(;‘) :[0,1] x [0,1] — [0, 1] are C*° contractions. An

important feature is that the foliation of the plane by vertical lines {z} x R, for

x € R, is preserved under the maps, i.e., TZ.(J.’\)LQc = Lf.()‘)(:c)'

Let X, be the space of sequences with symbols (i, j) and let o : 3,, — 3, be the
full shift on n symbols defined by (o), = x,41. Let Iy : 3, — R2, where

Ma(z) = Y TN ---TN(0,0),
m=1

say, is the natural map to the associated attractor A). Let ¥j be the space of
sequences with symbols ¢ and let o : ¥ — X be the coding corresponding to the
iterated function scheme { fio‘) le and let IIy : ¥; — Ay be the associated map.
Let p be an ergodic probability measure on ¥, and let & be the corresponding
ergodic probability measure on ¥;,. We decompose p as in Section 3, that is for any
Borel set A C 3, u(A) = fEk pe(A)dn(§) and denote I as the restriction of ITy

—1 —
to p~1¢. Thus we can define measures vy = ,uol'[;1 on Ay, 7y =poll, on Ay and
Uxe = Mg © H;l on Lﬁx £ respectively. We can associate two Lyapunov exponents

— 6 xo —
= [ tog|f, |0 Thdi(e) and xa = [ [ log| 2= o Madie(a)d(6)
Sk S JplE Yy
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We need the following transversality conditions to be satisfied: There exists a
constant C7 > 0 so that for w, 7 € ¥ with wy # 79:

leb{\ € U : [\(w) — Ix\(7)| < r} < Oy
and for any & € X, there exists a constant Cy so that for w,7 € p~1¢&:
leb{\ € U : |lI\(w) —IIx(7)| < r} < Cor.

We let Ay be the set where both transversality condiitions are satisfied. We can
now state analogues to Theorem 3.

Proposition 6.1. For almost all A € Ay:

dimp (v3) > — (h(ﬁ) N h(u\A)) if max{_h(ﬁ),_—h(uM)} <1 and

X1 X2 X1 X2
—h(@) h
dimg(vy) > 1+ min {— () , — (1l A) } otherwise.
X1 X2

The analogue of Theorem 4 is the following.
Proposition 6.2. For almost all A in the set,

{)\ A, min{_h(ﬁ)y_h(ulfl)} > 1}

X1 X2

vy is absolutely continuous.

Application (Bedford-McMullen). This setting includes the generalized Sierpinski
carpet studied by McMullen and Bedford. Let k.m > 2 and write g = %.
Consider contractions

T; : R? — R?
Ti : (.’L‘,y) = ()\ZC, )\By)—FC“
where ¢; € {(j,1) : 0<j<k—-1,0<I<m-—1},i=1,...,n are distinct points.

Let Ay ys be the associated limit set. In the particular case that A = % and \% = %
this corresponds to the generalized Sierpinski carpet construction of McMullen and
Bedford. The same general method allows one to show there exists s > % such that
for almost all A € [1, s] we have that

dim(Ay ys = “Tog
n671
where n; = Card{c; : cl(.l) = i}. To see this is a lower bound let p; = ﬁ for
i=1,...,n and p be (p1,...,p,) Bernoulli measure on %,,. If we let vy be the

natural projection of y onto Ay ys then Proposition 6.1 can be used to show that

there exists s such that
k—1
log (242 )

—log A

dimwvy >
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for almost every A € [%, s]. A simple adjustment of Mcmullen’s argument to account
for the overlaps shows that this is also an upper bound.

In [14] Peres and Solomyak ask whether it is possible to find an example of a
self-similar set with positive measure but empty interior (question 2.4). We cannot
answer this question? but we can show there exist simple examples of self affine
sets in R? with positive measure and empty interior. Let

1
T : (z,y) — (g% )\y) +¢
for 1 < i < 7 and where ¢ = (0,0),c2 = (0,1),¢c35 = (0,2),¢c4 = (1,1),¢5 =

(2,0),¢6 = (2,1) and ¢7 = (2,2). Let A(\) be the associated limit set. We can
choose 1 to be the Bernoulli measure defined by the probability vector

(%, %, %, %, %, %, %) Let vy be the natural projection of u onto A(\). In the setting
of Propositions 6.1 and 6.2 we have y; = —log3, x2 = log\, h(z) = log3 and
h(p|A) = 0.7324 . ... Thus, min {—hf(’f) , —h(")'((zA))} > 1 for A > 0.4807.... Since

for A < % the transversality conditions hold, we have by the method of Proposition
6.2 that for almost all A € (0.4807...,0.5) the measure v, is absolutely continuous,
and hence A(\) has positive measure.

We now need to show that A()) has empty interior. Note that X5 = {0, 1,2}
and I (z) = Y00 ) @n (%)n Consider the set

A={zcR:32ec{0,1,2}", N € N such that I\(z) = = and Vn > N, z,, = 1}.
This set is clearly dense in A(X) = [0,3] and for any = € A the sequence z €
{0, 1,2} such that IT)(z) = x is unique. Given x € A, let L, be the vertical line
intersecting (x,0). If y € 3,, and I (y) € L, then whenever z,, = 1 then necessarily
yn = (1,1). However,_by hypothesis 2, = 1 for all n > N and thus there are only
a finite number of sequences y such that II5(y) € L,. Hence L, N A(X) contains a

finite number of points for any given x € A. Since A is dense in A(\) = [0, 3] the
set A(A\) cannot contain open sets and so has empty interior.

Remark. Most of the of the elements of the above proofs depend on entropy and
are essentially measure theoretic in flavour. Thus, it is possible to extend many
of these arguments to non-uniformly hyperbolic systems (e.g., parabolic points,
systems which contract in mean).

6.3 Higher dimensions.. There are natural extensions to higher dimensions.
Perhaps this is best illustrated by simple examples in R3.

Ezxample 1. Consider the Menger sponge, consisting of 20 contractions. We can

associate to the corresponding subshift Y9 the Bernoulli measure p with equal
weights 2—10. The Sponge projects to the Sierpinski gasket, and the measure p

projects to a Bernoulli measure 1z on g given by

/1 1 11 3 3 3 3\"
- \107107107107207207 20720/

2Added in proof: This question has now been answered in the appendix to this paper.
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Finally, this projects to a Bernoulli measure i on R given by i = (%, %, %)N. The
entropies are h(p) = log(20) = 2.9957, h(f) = log(5)— 3 log(2)—3 log(3) = 2.099 . ..
and h(1) = log(5) — 2 log(2) = 1.054.... The method we described before applies
providing

A < min {e—(h(m—h(m), e—(h(ﬁ)—h(ﬁ)),e—h(ﬁ)} —0.348 .

Consider the probability vector (g1, g2, ¢3) for fi as in Example 2 of the introduction.
If we choose the probability vector for the 20 subsquares with weights ¢; /8 and g2 /4
then we see that the measure is absolutely provided A > 0.393. ..

Ezxample 2. Consider Sierpinski tetrahedron, consisting of 4 contractions. We can

associate to the corresponding subshift >4 the Bernoulli measure p = (%, %, %, %)N

The Sponge projects to the Sierpinski gasket, and the measure p projects to a

Bernoulli measure & on g given by n = (%, %, %) Finally, this projects to a
3

Bernoulli measure 7 on R given by 1 = (1, Z)N. The entropies are h(u) = log(4),
h(fr) = log(2) and h(i) = log(4) —log(3). The method we described before applies
providing

A\ < min {e—(h(u)—h(ﬁ))7 e~ (@) =h(m) e—h(ﬁ)} —0.569. ..
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