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Abstract. In this note we consider measures supported on limit
sets of systems that contract on average. In particular, we present
an upper bound on their Hausdorff dimension.

1. Introduction and Statement of Results

In this note we want to consider measures supported on limit sets
of systems that contract on average. There have been many articles
concerning finding upper bounds on the Hausdorff dimension of mea-
sures for attractors (and stationary measures for strictly contracting
iterated function systems (IFS)) or the closely related case of repellers
and invariant measures for expanding maps. For conformal maps there
are quite comprehensive results and, even in the case of non-conformal
results there are a number of strong results. For example, [2],[6] deal
with the linear case and [1],[9] with the nonlinear case. In [4] iterates
of random functions which contract on average are considered and this
idea can be put into the framework of IFS which contract on aver-
age. In [8] with the addition of random errors the exact value of the
dimension is computed almost surely. However, when we turn to the
problem of estimating the Hausdorff dimension of measures, for IFS
which contract on average, most previous authors have concentrated
on the case when the maps are conformal. Our aim is to find upper
bounds for the general case. Although there have been several papers
which provide upper bounds for the Hausdorff dimension of the mea-
sures defined by such systems, including [7] and [3], our results are also
new in the uniformly contracting case.

In this paper we shall consider an iterated function system in R
d

which contracts on average. Our aim is to provide a sharp upper bound
for the Hausdorff dimension of natural measures defined using such

systems. Let 0 < γ
(i)
1 < 1 < γ

(i)
2 , i = 1, · · · , m and f1, . . . , fm : R

d →
R

d be C2 diffeomorphisms satisfying

0 < γ
(i)
1 ≤ ||dfi|| ≤ γ

(i)
2 for all 1 ≤ i ≤ m.
1



2 THOMAS JORDAN AND MARK POLLICOTT

We can denote γ1 = min1≤i≤m γ
(i)
1 and γ2 = max1≤i≤m γ

(i)
2 . Let Σm

be the full shift on m symbols. We shall consider ergodic probability
measures µ on Σm satisfying

(1) η :=
∑

i

µ({x : x0 = i}) log γ
(i)
2 < 0.

If this is the case we say that the iterated function system contracts on
average. The sequence

fi1 ◦ · · · ◦ fin(0)

converges for µ almost all i (see [4]) and we will denote

Π(i) = lim
n→∞

fi1 ◦ · · · ◦ fin(0).

This is well defined for µ-almost all i and so we can let ν = µ ◦ Π−1.
If the system is uniformly contracting and the open set condition is
satisfied then [9] gives an upper bound for the dimension. If there are
expansions in the IFS then the limit set will include ∞ and in many
cases is equal to be the whole of R

d (see [7] for examples). For the
linear case where the contractions are less than 1

2
typical values for the

Hausdorff dimension of the attractor and stationary measures can be
computed [2], [6]. If the linear maps have norm less than 1 then adding
random perturbations gives an almost sure equality, [6].

For A ∈ Lin(Rd, Rd) we define the singular values

α1(A) ≥ · · · ≥ αd(A)

to be the eigenvalues of (A∗A)1/2. For 1 ≤ j ≤ d we define αj(x, fi) =
αj(Dfi(x)). For 0 ≤ s ≤ d choose k = [s] + 1 and define

φs(fi, x) = log α1(x, fi) + . . . + (s − k + 1) log αk(x, fi).

Our first result describes the subadditive behaviour of φs(fi, x).

Lemma 1. For any 0 ≤ s ≤ d the function φs satisfies the following
subadditive property

φs(fi1 ◦ fi2, x) ≤ φs(fi1 , fi2(x)) + φs(fi2 , x)

Proof. This can be proved using Lemma 2.1 in [2] which states that for
T, U ∈ Lin(Rd, Rd) we have that

(2) φs(TU) ≤ φs(T )φs(U),

where φs(T ), etc., have the obvious interpretation. By the chain rule
we have that Dx(fi1 ◦ fi2) = Dfi2

(x)(fi1)Dx(fi2) and the result follows
from the definition of φs(f, x) and (2). �
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Let gs : Σm → R be defined by

gs(i) = φs(fi, Π(σ(i))).

It follows by the Birkhoff Ergodic Theorem that

(3) lim
n→∞

1

n

n−1
∑

j=0

gs(σji) =

∫

gs(i)dµ(i) =: gs(µ)

for µ almost all i ∈ Σm.
Given a Borel set X we define Hs

ρ(X) to be the infimum of the
summations

∑

j rs
j where ∪jB(zj, rj) ⊇ X, is a finite cover by balls

B(zj, rj) with radii satisfying rj ≤ ρ. The Hausdorff dimension of X is
then given by

dimH(X) = inf

{

s : lim
ρ→0

Hs
ρ(X) = 0

}

.

We recall that the Hausdorff dimension of measure is the infimum of
the dimensions of Borel sets of full measure. We now have our first
upper bound for the Hausdorff dimension of ν.

Lemma 2. Let s satisfy

gs(µ) = −h(µ)

then we have that

dimH(ν) ≤ s.

However, it is possible to improve on this bound. For i ∈ Σm we
consider the values

1

n
φs(fi1 ◦ · · · ◦ fin , Π(σni)).

By the sub-additive ergodic theorem [5] this converges almost surely to

f s(µ) := inf
n≥1

{

1

n

∫

φs(fi1 ◦ · · · ◦ fin , Π(σni))dµ(i)

}

.

Now we consider the iterated function system formed by taking the
iterates fi1 ◦ · · · ◦ fin and the same measure µ. In this case we can
define gs

n(µ) by

gs
n(µ) =

∫

φs(fi1 ◦ · · · , ◦fin, Π(σni))dµ(i)

and note that considering the system of nth level iterates will cause
the entropy to be multiplied by n. Thus applying Lemma 2 gives that

dimH(ν) ≤ sn
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where sn satisfies
1

n
gsn

n (µ) = −h(µ).

Moreover, by the subadditive ergodic theorem we have that

inf
n≥1

{

1

n
gs

n(µ)

}

= f s(µ).

Hence

dimH(ν) ≤ s

where s = infn≥1 sn satisfies

f s(µ) = −h(µ),

by the subadditivity of φs.
Our next step is to show how f s(µ) can be written in terms of Lya-

punov exponents.

Lemma 3. There exist constants

0 > λ1(µ) ≥ · · · ≥ λd(µ)

where for µ almost all i

lim
n→∞

1

n
log αj(DΠ(σi)fi1 · · ·DΠ(σni))fin) = λj

Proof. This follows from Oseledec’s Multiplicative Ergodic Theorem
[5]. �

We now come to our main result.

Theorem 1. Let ν = µ◦Π−1 be the stationary measure for an iterated
function system as defined above. We have that

(4) dimHν ≤ min
1≤k≤d

{

k − 1 −
h(µ) +

∑k−1
j=1 λj

λk

}

.

Proof of Theorem 1 (assuming Lemma 2). The proof of Lemma 2 will
be given in the remainder of the paper. Fix 0 ≤ s ≤ d. It follows by
the definitions of gs

n(µ) and f s(µ) and by Lemma 3 that

f s(µ) =
k−1
∑

j=1

λj + (s − k + 1)λk for k − 1 ≤ s ≤ k.

Let s0 be the solution in s to the identity −h(µ) = f s(µ) and k where
k − 1 ≤ t ≤ k. We have that

−h(µ) = λ1 + . . . + λk−1 + (s0 − k + 1)λk
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and thus

s0 = (k − 1) − h(µ) + λ1 + . . . + λk−1

λk

.

A routine, if long, calculation shows that this is the minimum given in
(4). �

In the case of conformal maps we always have an equality, although
there exist examples of affine contractions for which there is a strict
inequality. However, with random perturbations to affine contractions
we can recover the equality in the context of random attractors [6].

2. Calculating Hausdorff Measure and Hausdorff

dimension

The key to our proof of Lemma 2 is estimating how one iteration of
each map effects the Hausdorff measure. For this purpose we need a
simple result regarding the derivative of a diffeomorphism.

Lemma 4. Let f : R
d → R

d be a C1 diffeomorphism. For any ε > 0,
r > 0 we can find ρ such that for z, y ∈ B(0, r) with ||z − y|| ≤ ρ we
have

(5) ||f(z) − f(y)− Dzf(z − y)|| ≤ ε||z − y||

and

(6) for 1 ≤ j ≤ d we have that |αj(f, z) − αj(f, y)| ≤ ε.

Proof. Let ε > 0 we can find ρ1 such that condition (5) is satis-
fied by Frechet differentiability of f . The Frechet derivative Df :
R

d → R
d is a linear map. Since Df is uniformly continuous we can

find ρ2 such that for ||y − z|| ≤ ρ2 and any x ∈ B(0, 1) we have
||Dyf(x) − Dzf(x)|| ≤ ε. Thus Dyf(B(0, 1)) ⊂ B(Dzf(B(0, 1)), ε)
where B(Dzf(B(0, 1)), ε) denotes an ε-neighbourhood of the image
Dzf(B(0, 1)). Since the singular values of Dzf are given by the prin-
cipal axes of the ellipsoid Dzf(B(0, 1)) it follows that Dyf(B(0, 1))
will be contained inside the ellipsoid with principal axes α1(f, z) +
ε, . . . , αd(f, z) + ε. Similarly, Dzf(B(0, 1)) will be contained inside the
ellipse with axes α1(f, y)+ ε, . . . , αd(f, y)+ ε. Thus for each 1 ≤ j ≤ d,
we have |αj(f, z) − αj(f, y)| ≤ ε. �

We can now prove a result estimating the effect on Hausdorff measure
of an iteration of f . This is very similar in nature to Lemma 3 and
Corollary 1 in [9].
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Lemma 5. Let f : R
d → R

d be a C1 diffeomorphism. We can choose
ρ sufficiently small such that for A ⊂ B(x, ρ) ⊂ R

d we have

Hs
bρ(f(A)) ≤ CHs

ρ(A)

where C = 2sds/2 exp(φs(f, x)) and b = 2
√

d exp(α1(f, x)).

Proof. We choose ε > 0 to be sufficiently small such that (1 + ε)eε < 2.
By Lemma 4 we can find ρ such that both (5) and (6) are satisfied.
Let Hs

ρ(A) = h. It follows that for δ > 0 we can find a finite set of
balls B(zi, ri) where ∪iB(zi, ri) ⊇ A, ri ≤ ρ for all j and

∑

i r
s
j < h+ δ.

By definition, the sets f(B(zi, ri)) cover f(A). Furthermore, due to
our choice of ρ and Lemma 4 these will be contained in ellipses with
principal axes (1 + ε)ri exp(αj(f, x) + ε), j = 1, · · · , d. More precisely,
by (5) f(B(zi, ri)) is contained in an ellipse with principal axes

(1 + ε)rj exp(αj(f, zj))

and we can then apply (6). Choose k such that k − 1 ≤ s ≤ k. We
can cover f(B(zi, ri)) with

[

exp(α1(f, x) + . . . + αk−1(f, x) + (k − 1)ε)

exp((k − 1)αk(f, x) + ε)

]

+ 1

balls of radius (1 + ε)
√

d exp(αk + ε)ri. Thus we have that

Hs
bρ(f(A)) ≤ exp(α1(f, x) + . . . + αk−1(f, x) + (k − 1)ε)

exp((k − 1)(αk(f, x) + ε))

×ds/2 exp(s(αk + ε))(1 + ε)s
∑

i

rs
i

≤ esε(1 + ε)sds/2 exp(φs(f, x))
∑

i

rs
i

≤ C(h + δ).

Since δ was arbitrary the proof is complete. �

The next lemma provides a simple method for giving an upper bound
to the Hausdorff dimension of a measure.

Lemma 6. Let µ be a probability measure on R
d. If we can find a

sequence of sets An such that

(1) limn→∞ µ(An) = 1
(2) limn→∞ Hs

βn
(An) = 0 for a sequence {βn}n∈N where limn→∞ βn =

0

then it follows that

dimH(µ) ≤ s.
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Proof. We can choose a subsequence {Bn}n∈N where µ(Bn) > 1−
(

1
2

)n

for all n. Fix t ∈ N and let Yt = ∩n≥tBn. Observe that

µ(Yt) ≥ 1 −
∞
∑

n=t

(

1

2

)n

= 1 −
(

1

2

)t−1

.

For any n ≥ t a cover of Bn is also a cover of Yt and so Hs(Yt) = 0 thus
implying dimHYt ≤ s. Furthermore µ(∪t∈NYt) = 1 and dimH(∪t∈NYt) ≤
s which is sufficient to complete the proof. �

3. Proof of Lemma 2.

The method of proof of Lemma 2 involves applying Lemma 6. To
begin we need to define a suitable sequence of sets. This will be done
by defining suitable subsets on the shift space, Σm and then projecting
to R

d. Recall the definition of η given in (1). Fix ε > 0 such that
η + ε < 0. We then choose t such that gt(µ) + h(µ) = −3ε. It is clear
that as ε → 0 we have t → s from above. Let C0 > 2tde/2 and choose
N such that

(7) C0e
Nε < 1 and eN(η+ε) > 2

√
d.

We would next like to choose sets Xn ⊂ Σm such that any i ∈ Xn

satisfies

(1) e−nN(h(µ)+ε) ≤ µ([i1, . . . , inN ]) ≤ e−nN(h(µ)−ε)

(2) nN(gs(µ) − ε) ≤
∑nN−1

i=0 g(σi(i)) ≤ nN(gs(µ) + ε)
(3) log ||dfi1 ◦ · · · ◦ dfikN

|| ≤ kN(η + ε) for all k ≥ [log n].
(4) Let rn = n2, then we have that Π(σnN (i)) ∈ B(0, rn).

We then write Λn = ΠXn . It remain to show that we can choose sets
Xn, and in such a way that Λn satisfies the conditions of Lemma 6.

Lemma 7. We can find sets Xn satisfying the above hypotheses and
thus

lim
n→∞

ν(Λn) = 1.

Proof. By the definition of ν and Λn, to get that ν(Λn) → 1 it suffices
to show that µ(Xn) → 1. Thus it suffices to show that as n → ∞ the µ

measure of sequences satisfying each of the four conditions above will
converge to 1. The fact that sequences satisfying conditions (1) and
(2) have measure tending to 1 follows from the Shannon-Macmillan-
Brieman Theorem and the Birkhoff Ergodic Theorem [5], respectively.
For condition (3), note by the Birkhoff Ergodic Theorem applied to

log γ
(i1)
2 we have that for µ-almost all i

(8) lim
k→∞

1

k
log γ

(i1)
2 · · ·γ(ikN )

2 =

∫

log γ
(jk)
2 dµ(j = η.
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The result then follows since

log ||dfi1 ◦ · · · ◦ dfikN
|| ≤ log γ

(i1)
2 · · ·γ(ikN )

2 .

For condition (4) we first note that

µ{i : Π(i) ∈ B(0, rn)} → 1 as n → ∞.

Since µ is shift invariant it then follows that

µ{i : Π(σnN i) ∈ B(0, rn)} → 1 as n → ∞
which is sufficient to complete the proof. �

We now need to consider the second condition from Lemma 6. We
define a sequence {βn} by

βn = 2
√

denN(η+ε).

Fix ρ as in Lemma 5. For a sequence i ∈ Xn we want to consider the
following set

BnN(i, ρ) =

{

j ∈ Σm : (i1, . . . , inN) = (j1, . . . , jnN) and d
(

ΠσnN (i), ΠσnN(j)
)

≤ ρ

γNk
2

}

where k = log n. An important property of these sets is that for l ∈
BnN(i, ρ) and 0 ≤ j ≤ nN we have that

Π(σjl) ∈ B(Π(σji), ρ).

For notational convenience we will write

B0(i) =

{

j ∈ Σm : d(Πi, Πj) ≤ ρ

γNk
2

}

.

Lemma 8. We can find a finite set Yn ⊂ Σm with at most
[

2
√

dn2nN log γ2

ρ
enN(h(µ)+ε)

]

+ 1

points such that
∪i∈Yn

BnN(i, ρ) ⊇ Xn.

Proof. By property (1) of Xn each i ∈ Xn satisfies

µ([i1, . . . , inN ]) ≥ e−nN(h(µ)+ε)

and hence since µ is a probability measure it follows that there are at
most enN(h(µ)+ε) choices for the first nN elements of a sequence in Xn.
Fix one of these choices [i1, . . . , inN ]. Consider

Π(σ−nN(Xn ∩ [i1, . . . , inN ]))

and note that we can find a centred covering with at most 2
√

dn2nN log γ2

ρ

balls of size less than ρ
γNk
2

. �
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We now use Lemma 5 to estimate the Hausdorff measure of one of
these sets.

Lemma 9. Fix ρ as in Lemma 5. Let i ∈ Xn. We have that

H t
bnρ(Π(BnN (i))) ≤ C0C

n
1 exp

(

nN−1
∑

j=0

gt(σj(i)

)

.

Where

bn = (2
√

d)n exp

(

nN−1
∑

j=0

α1(fσj(i)1 , Π(σj+1i))

)

C0 = sup
x∈Rd

H t
ρ(B(x, ρ))

C1 = 2sds/2

Proof. For 1 ≤ k ≤ N consider the sets

fi1 ◦ · · · ◦ fikN
(Π(BnN (i, ρ)))

and note that they all have diameter less than ρ. Thus we can apply
Lemma 5 iteratively n times to get

Hs
bnρ(Π(BnN (i, ρ))) ≤ (2tdt/2)n exp

(

n−1
∑

j=0

φt(fijN+1
◦ · · · ◦ fi(j+1)N

, Π(σ(j+1)N(i))

)

×H t
ρ(Π(B0(σ

nN i, ρ)))

where bn is as in the statement of the Lemma. By the subadditivity of
φt and the definition of gt we have that

exp

(

n−1
∑

j=0

φt(fijN+1
◦ · · · ◦ fi(j+1)N

, Π(σ(j+1)N(i))

)

≤ exp

(

nN−1
∑

j=0

gt(σj(i)

)

.

So if we let

C0 = sup
x∈Rd

H t
ρ(B(x, ρ))

then we have

Hs
bnρ(Π(BnN(i, ρ))) ≤ C0C

n
1 exp

(

nN−1
∑

j=0

gs(σj(i)

)

and the proof is complete. �

By applying Lemmas 8 and 9 we get a result which shows that the
sets Λn satisfy the conditions to apply Lemma 6.
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Lemma 10. We have that

H t
ρcn

(Λn) = O(n2+N log γ2Cn
1 e−nNε)

where eNε > C1,

cn = (2
√

d)n(η + ε)N

and cn → 0 as n → ∞.

Proof. From Lemma 8 it follows that we can find a subset Yn = {i(1), . . . , i(j)} ⊂
Xn where ∪Yn

Π(BnN(i, ρ)) ⊇ Λn and j = O(n2+N log γ2)enN(h(µ)+ε). Fix-
ing 1 ≤ k ≤ j and applying Lemma 9 to BnN(i(k), ρ) gives that

H t
bnρ(Π(BnN(i(k)))) ≤ C0C

n
1 exp

(

nN−1
∑

j=0

gt(σj(ik)

)

.

However by applying condition 3 of the definition of Xn it follows that
bn ≤ cn. We can also apply condition 2 to get that

H t
cnρ(Π(BnN(i(k)))) ≤ C0C

n
1 exp(nN(gs(µ) + ε).

This gives us that

H t
cnρ(Λn) ≤

j
∑

k=1

H t
bnρ(Π(BnN(i(k))))

≤ O(n2+N log γ2)C0C
n
1 enN(h(µ)+gt(µ) = O(n2+N log γ2)C0C

n
1 e−nNε.

Since N satisfies the conditions specified by (7) the convergence to 0
of the Hausdorff measure and cn is easy to see. �

Combining Lemmas 10 and 7 completes the proof of Lemma 2.

4. Examples

We will now give some simple examples in R
2 to which our results

can be applied.

Example 1. Let f1, f2 : R
2 → R

2 be defined by

f1(x, y) =
(x

2
,
y

3

)

f2(x, y) = (x + 1, y + 1)

If we take µ to be
(

1
2
, 1

2

)

-Bernoulli measure on Σ2 and ν to be the natural
projection of µ then condition (1) is clearly satisfied. Moreover we can
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easily calculate λ1(µ) = 1
2
log 1

2
and λ2(µ) = 1

2
log 1

3
. Thus applying,

Theorem 1 we get that

dimH(ν) ≤ min

{

− h(µ)

λ1(µ)
, 1 − h(µ) + λ1(µ)

λ2(µ)

}

= 1 +
log 2

log 3
,

since h(µ) = log 2. In this case since both the matrices were diagonal
the Lyapunov exponents were easy to calculate. Moreover the upper
bounds given by Lemma 2 and Theorem 1 are identical. The limit set is
the sector {(x, y) : 0 ≤ y ≤ x} which clearly has Hausdorff dimension
2.

We can consider a small non-linear perturbation of this example. Let
f1, f2 : R

2 → R
2 now be defined by

f1(x, y) =
(x

2
,
y

2

)

f2(x, y) = (x(1 + ε sin y) + 1, y(1 + ε sin x) + 1)

where |ε| > 0 is small. If we again take µ to be
(

1
2
, 1

2

)

-Bernoulli measure
on Σ2 and ν to be the natural projection of µ then h(µ) = log 2 and we
can use the trivial bounds |λ1(µ) − 1

2
log 1

2
| < 1

2
log(1 + ε) and |λ2(µ) −

1
2
log 1

3
| < 1

2
log(1 + ε). Thus applying Theorem 1 we get that

dimH(ν) ≤ min

{

− h(µ)

λ1(µ)
, 1 − h(µ) + λ1(µ)

λ2(µ)

}

≤ 1 +
log 2 + log(1 + ε)

log 3 − log(1 + ε)

Example 2. Let f1, f2 : R
2 → R

2 be defined by

f1(x, y) =
(x

2
,
y

2

)

f2(x, y) =

(

x + 1

2
,
3y

2
+ 1

)

If we again take µ to be
(

1
2
, 1

2

)

-Bernoulli measure on Σ2 and ν to be
the natural projection of µ then condition (1) is clearly satisfied. More-

over we can easily calculate λ1(µ) = log
√

3
2

and λ2(µ) = log 1
2
. Thus

applying Theorem 1 we get that

dimH(ν) = 1 +
log 3

2 log 2
= 1 · 34417 · · · .
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In this case the limit set can be viewed as a measurable graph over the

interval [0, 1]. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Remark. In Example 1, if we change µ to the (p, 1 − p)-Bernoulli
measure, then as p → 0 the upper bound becomes larger than 2, and
thus gives no useful information. On the other hand, if p → 1 then the
upper bound converges to 0. In the case of Example 2, the system only
contracts on average if p < log 2

log 3
. As p → 0 the upper bound converges

to 0.

Example 3. Let f1, f2 : R
2 → R

2 be defined by

f1(x, y) = (0.3x + 0.2y, 0.2x + 0.3y)

f2(x, y) = (1.2x + 0.2y + 1, 0.1x + 1.2y + 1)

Let µ on the shift space be the
(

1
2
, 1

2

)

-Bernoulli Measure and let ν be the
natural projection. In many cases, calculating the Lyapunov exponents
can be an extremely difficult problem, but the upper bound in Lemma
2 remains easier to calculate. By taking iterates of the function it is
possible to improve this estimate and eventually the values will converge
to that given in Theorem 1. For this example, we give below the upper
bounds sn given by the argument following Lemma 2 for different values
of n.
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Value of n Upper bound sn on dimension
1 1.4412
2 1.4412
6 1.4410
10 1.4409
18 1.4408
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