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Invariant measures for Iterated Function Systems (IFS)

IFS: collection fi, ..., f,, : X — X of contractions on a compact set
X CR9

soon: X - compact interval and f; - C?*9 hyperbolic
j

Attractor: a non-empty compact set A C X with
A=FR(A)U...Uf,(A)

(it exists and is unique)
Symbolic space: Q := AY, where A= {1,...,m}
Natural projection: 1: Q — X,
Nw) := ﬁ fo,0--0f, (X)
n=1

where w = (w1,wa,...) € Q. Then A=T1(Q).
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The middle-thirds Cantor set: X = [0,1], fi(x) = x, fi(x) =

3 X+
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Invariant measures: let u be (a shift-invariant, ergodic) finite measure
on €. We are interested in properties of the projected measure IM,.x on A.

E.g. if uu is the Bernoulli measure (py, ..., pn)®Y, then v = M, pu is the
unique probability measure satisfying

v=> pi(f).,
j=1

i.e. it is the stationary measure for the Markov process on X generated
by applying f; with probability p;.
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Questions

dimgy(A) =7, dimy(M,.p) =7, is M, 4 absolutely continuous ?
Recall:

log v(B(x, r))

di = d = lim inf
imy(v) = ess sup d(v, x) := ess sup im in log 1

xXr~ov xXr~ov r—

Natural upper bound for ergodic 1z on Q and C'*° IFS on interval:

h
dimg(Myp) < min {17 “}
Xn

where h,, - entropy of 1 (w.r.t to shift on Q) and x,, - Lyapunov exponent

. / jog |, (M(0w))| dyu(w)
Q
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Heurestics: Assume first £;(X) N f;(X) =0 for i # j. Let v =, p and
pick a p-typical w € Q

d(v,N(w)) ~ log (|fu...w (X)) _ log pu([wr, . .. wn]) log e =" _ hy
o log | ..o, (X)) 10g [for..n(X)] " loge=™

If there are overlaps between cylinders, then

V([ for. w0, (X)) = pllwr, - - s wnl),

hence we only get an upper bound on the dimension and the dimension
can drop

However in many families of iterated function systems with overlaps, the
dimension formula holds generically
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Transversality
U C RY - open and bounded parameter space.
For each A\ € U consider an IFS {15-’\}164 on a compact interval X and
the corresponding natural projection M* : Q — X
Definition

The family {rj-’\}jeA satisfies the transversality condition on U if there
exists C > 0 s.t. for every r > 0 and w, 7 € Q with wy; # 7y

o ({/\ eU: ||_|)‘(w) — I_IA(T)| < r}) < Cr

Theorem (Simon, Solomyak, Urbariski)
Let £* be C'™0 with 0 < 71 < | £ (x)| <72 <land A £ € C1F°
continuous. Let u be an ergodic shift-invariant prob. measure on Q. If
the tranversality holds on U, then for Lebesgue a.e. A € U

o dimy(M}y) = min{1, 2—7}

hy

Xu>1'

e M)y is absolutely continuous if

Adam Spiewak Parameter dependent invariant measures



Our setting

We allow the measure on the symbolic space to also depend on the
parameter, i.e. we study a family of projected measures

rli\.u)\a A€ Ua

where py are probability measures on €.

Under suitable regularity assumptions on the IFS and the family py, we
obtain an analog of the previous theorem.

Main difficulties are in the absolute continuity part.
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General examples / motivations
1. Stationary measures for place-dependent probabilities

Let {f*}jca be an IFS on interval X and let p; : X — (0,1) be the

m

probability functions satisfying > pj(x) = 1. A place-dependent
j=1

stationary measure vy on X is one satisfying

[ e = [ 3= e 0)da

JjeA

for any continuous test function ¢.
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If p; are Holder continuous, then vy is unique and vy = I'Ii;@\, where iy
is a Gibbs measure of the potential

¢ (w) = log|pu, (M (ow))],

i.e. there exists Py € R and C, > 1 such that for every w € Q and n € N

< #([wln]) <c.
exp(—Pxn + :Z:IO M okw))

Note that ¢* (and hence y,) depends on the parameter, even if pj's do
not!

Typical dimension formula and absolute continuity of such
place-dependent invariant measures were obtained by Baldzs Barany!.
Unfortunately, the proof contains an error (see Corrigendum on Balazs'
webpage).

1On Iterated Function Systems with place-dependent probabilities, Proc. Amer.
Math. Soc. 143 no. 1 (2015), 419-432.
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2. Equilibrium measures. Consider the pressure function

t

P\(t) = lim n~tlog Z

n—oo
weAn

SN
dx o

and the corresponding roots sy > 0, i.e. solutions of the Bowen'’s
equation
PA(S)\) = 0

sy is the "natural guess” for the dimension of the attractor (and in
general an upper bound for it).

The "natural” measure vy is the projection vy = M} uy of the equilibrium
measure [, i.e. the Gibbs measure of the potential

d
A _ 9 apA
¢ (w) = sy log dxf“’l(rl (aw))‘ .
It satisfies
Sy = hﬂ/\
N =

XHA
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Assumptions on the IFS

IFS {13-’\}1-64 on a compact interval X C R with A € U C R, where U is
an open and bounded interval. We assume that there exists ¢ € (0, 1]
such that

(A1) the maps )5/\ are C?*%-smooth on X (uniformly w.r.t. \)

(A2) the maps A — lj-A(x) are C'*™-smooth on U (uniformly w.r.t. x)

(A3) the second partial derivatives dgj/\ );)‘(X), %)?‘(X) are J-Holder
(uniformly, both in A and x)

(A4) the system {'S-A}jeA is uniformly hyperbolic and contractive: there
exists 71, 72 > 0 such that

0<m <&M <<
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Assumptions on the measures

Let {ux},cp be a collection of finite Borel measures on Q. We will
consider two continuity assumptions on fy:

(MO0) for every Ag and every € > 0 there exist C,£ > 0 such that

Cre el ([w]) < pa([w]) < Ce*l¥lun, ([w])

holds for every w € Q*, |w| > 1 and A € U with |\ — Xo| < &;

(M) there exists ¢ > 0 and 6 € (0, 1] such that for all w € Q, |w| > 1,
and all \, N € U,

e PPy (w]) < pa(w]) < €PNy ([w]).

Example: 1) - Gibbs measures of Holder potentials ¢*
e if A+ ¢ is continuous, then (MO) holds
e if A — ¢ is Holder, then (M) holds
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Main results

From now on, we always assume that {ﬂA}jeA is a parametrized IFS
satisfying smoothness assumptions (Al) - (A4) and the transversality
condition (T) on U.

Theorem 1.

Let {1a},cg be a collection of finite ergodic shift-invariant Borel
measures on £ satisfying (MO0), such that h,, and x,, are continuous in
A. Then equality

dimy (M} py) = min {1, h‘“}

Xﬂx

holds for Lebesgue almost every A € U.

This was essentially proved by Baldzs Barany and Michat Rams? in a
more specific context

2Dimension maximizing measures for self-affine systems, Trans. Amer. Math. Soc.
370 (2018), 553-576.
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Theorem 3.

Let {1}, be a family of Gibbs measures on Q corresponding to a
family of potentials ¢*: Q — R which are uniformly Holder. Moreover,
suppose that there exist constants ¢y > 0 and 6 > 0 such that

|0 (w) — ¢ ()| < co|A = N|? forevery w e Qand A\, N € U. (1)
Then {1x}, g satisfies (M) and M4, is absolutely continuous for

Lebesgue almost every A in the set {\ € U : Q‘—* > 1}.

DN
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Sketch of the proof of Theorem 1.

Tools

Correlation dimension: for a finite Borel measure p on a metric space
X and o > 0, let

5a(u,d)_//mdﬂ(x)dﬂ(}/)
X X

be the a-energy of . The correlation dimension of 4 is

dimeor(pt, d) = sup{a > 0: E,(p, d) < o0}

Fact
dimeor(p, d) < dimp(p, d)
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Metric on Q: for A € U and w, 7 € Q2 define
dr(w, 7) = |55 (X)]-

In this metric, M* : Q@ — R is Lipschitz and for an ergodic shift-invariant
measure 4 one has

h
dimy(p, dy) = -

22N

We are proving:

dimp(NM} ) = min{1, dimy(px, d\)}
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Sketch of the proof
Goal 1.: dimqo, (M) px) > min{1,dimeo (p2x, dy)} for ae. A€ U
Classical transversality argument:
dimco,(l'li‘u)\o) > min{1l,dimg, (1, dy\)} for a.e. A e U
Enough: map A — dime, (M) is continuous, uniformly for I in our

family
(and X\ — dimeo(pa, d) as well)

Then: for every \g € U and ¢ > 0, there exists an open neighbourhood
V of A\ such that fora.e. A e V

dimeor (M2 ) > dimeor (M) — € > min{1, dimeor (112, dr)} — €

> min{l, dimcor(:u’)\a dA)} -2
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Continuity of A\ — dimg,(M,x)

Enough: for A9 and € > 0 there exists a neighbourhood V of Ay such
that Eo(Mepen) S Eage(Mipiy,) for A e V

Mefen) //Il'l = N(7)["“dpa(w)dpa(r)

~ Y 2% @ p({IN(w) = N(r)| <277)
n=0

~ 220”7/1)\ @ pA({|M(w|gn1) = N(7]gal>)[ < 277})
n=0

0o
S 2, @ g ({IN(w]gnl™) = N(7]gn1>)] < 2773)
n=0

~ ga—}—a(n*//')\o)
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We have proved:
dimp(M210) > dimeor (M2 00) > min{1, dimeor (11, da)}

. . . h
Remains: having min{1, {**} as the lower bound
73N

Applying Egorov's theorem to the convergence in SMB and Birkhoff’s
theorems, one has

h

M

dimcor(,u)\lAvd)\) > —€

22N

on a set A of almost full ) measure. To conclude the proof, one can
repeat the reasoning for the restricted measures.
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Absolute continuity?

For a fixed measure, almost sure absolute continuity is proved by showing

/:/;xniuMp@dﬂiuMcwdA
U R

<lim |nf—// Ming (B(x, r))dNM iy, (x)dA < oc.

r—0

Transversality is used to obtain, roughly speaking,

// Mg (B(x, 1))dM i, (x)dA < Cr
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Problem in our case: using the previous approach, we only obtain

//ni“k(B(X’ r))dM pa(x)dA

5 r_E//ni/J/)\o(B(Xa r))dniMAo(X)d)‘ S Crl_s’
vV R

so we do not get the finiteness of the integral.
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Sobolev dimension

Sobolev energy:

T.(v) = / 15(6)Ple|* e

Sobolev dimension:

dims(v) :==sup{a > 0:Z,(v) < oo}

if dims(v) > 1, then ¥ € L2(R)

hence, if dims(v) > 1 then v is absolutely continuous
for a € (0,1) we have Z,(v) = ca&a(V)

(hence dimeyr(v) = dims(v) provided 0 < dims(v) < 1)

unfortunately, equality of energies does not extend to a@ > 1
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Recall:

(M) there exists ¢ > 0 and 6 € (0, 1] such that for all w € Q, |w| > 1,
and all \, ) € U,

e Pl () < pale]) < Py ().

Theorem 2.
Let {1}, g be a collection of finite Borel measures on Q satisfying (M).
Then
dims (M} ) > min {dimco, (12x, dy), 1 4+ min{4,6}}
holds for Lebesgue almost every A € U. Consequently, M2 is

absolutely continuous with a density in L? for Lebesgue almost every X in
the set {\ € U : dimeo(pea, dr) > 1}.

A fixed measure version of this theorem follows from results of Peres and
Schlag
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Instead of the usual energy integrals, one can rely on the decomposition
obtained from the Littlewood-Paley function:

1 : R — R of Schwarz class, with @ >0 and

supp(v) C {€: 1< [g] <4}, Y d(27¢) =1 forall £ £0.

T.w) =3 2o / / $(2"(N(w1) — N(ws)) dyafen) dpes)
=0 9

Difficulties: 1 is not non-negative, so using bounds on the measures to
change A — )\g requires extra care

A+ dimg(M.uy) is no longer continuous
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Our strategy:

/ . (v2)dA

%

~Zza" / / Q/ (2" (wn) — 1P (w2)) djua () dpa (w2) A

~Z2“"/ / / (27N (1) =M (@2)) en(wr, w2, A) dng (wn) o, (w2) dA

We extended the proof of Peres and Schlag to apply transversality for the
modified kernel 1(2"-)e,(+).

This requires certain regularity of e,(-), coming from condition (M).
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Theorem 3. (almost sure absolute continuity for projections of Gibbs
measures in the region {\ € U: i‘—* > 1})

HX

follows from

Theorem 2. (almost sure absolute continuity in the region
{A e U :dimer(pn, dy) > 1})

by finding A C Q such that restrictions px|a satisfy both

dimeor (e a, dy) > Q‘“ e and property (M)

HX

We construct it using the Large Deviations Principle for Gibbs measures.
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Applications

absolute continuity for place-dependent Bernoulli convolutions (=
a.c. of SRB measures for certain modified fat baker's maps)

a.c. of Blackwell measures for binary channels (transversality
obtained by Béarany and Kolossvéry)

@ equilibrium measures for IFS satisfying (A1) - (A4) and transversality

@ in particular: equilibrium measure for non-homogenous self-similar

IFS
{x = Aix,x = dox + 1}

is absolutely continuous for a.e. (A1, X2) € (0,1)? such that
A1+ A2 > 1 and max{A1, A2} < 0.668 (trasnversality by Ngai-Wang
and Neunh&userer)

some hyperbolic random continued fractions:

{fa fﬁ}— X+ « x4+ 3
L2 f 7 Ix+a+1" x4+ 8+1

for a € (0,107%] and 8 = v/2 — 1, the equilibrium measure v, 5. » is
absolutely continuous for a.e. A € (0,0.077)
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Thank you for your attention!

Adam $piewak P: depend invariant




